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ABSTRACT 
Designing user-interfaces so that first-time or infrequent users can accomplish their goals by 

exploration has been an enduring challenge in Human-Computer Interaction. Iterative user-testing 

is an effective but costly method to develop user-interfaces that support use through exploration. A 

complementary method is to use modeling tools that can generate predictions of user exploration 

given a user-interface and a goal description. 

Recent computational models of goal-directed user exploration have focused on predicting user 

exploration of websites and demonstrated how predictions can inform user-interface design. These 

models employ the common concepts of label following and information scent: that the user’s 

choice is partly determined by the semantic relevance between the user’s goal and the options 

presented in the user-interface. However, in addition to information scent, other factors including 

the layout position and grouping of options in the user-interface also affect user exploration and the 

likelihood of success. 

This dissertation contributes a new model of goal-directed user exploration, called CogTool-

Explorer, which considers the layout position and the grouping of options in the user-interface in 

concert with a serial evaluation visual search process and information scent. Tests show that 

predictions from CogTool-Explorer match participant data better than alternative models that do 

not consider layout position and grouping. This dissertation work has also integrated the CogTool-

Explorer model into an existing modeling tool, called CogTool, making it easier for other 

researchers and practitioners to setup and generate predictions of likely user exploration paths and 

task performance using CogTool-Explorer. 
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runs to do, parameter values such as k (“Eagerness”), the frame to start exploration from, 

and the frame or frames that indicate a successful model run. Each model run will be 

listed in CogTool’s Project Window and can be further inspected in CogTool’s Script Step 

Window. 
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Figure 48: Mockup of the Control Display Unit (CDU) of a Boeing 777’s cockpit. An image of 

the CDU was used as the background image of this frame. Button widgets were created 

over the parts of the image where a real button would be and text label widgets were 

created over the parts of the image where textual information would be displayed in the 

CDU’s display. Note that the text string “Initialization Reference position”, which 

describes the Displayed Label “INIT REF”, was entered as part of the Displayed label 

before the Auxiliary Text field was implemented in CogTool-Explorer. Here, the “INIT 

REF” button is selected (highlighted with a gray border, which is standard CogTool 

behavior) and the Mode Keys group that the “INIT REF” button belongs to is highlighted 

with a red border (which is new in CogTool-Explorer). 
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1 INTRODUCTION 
Designing user-interfaces (UIs) so that first-time or infrequent users can accomplish their goals by 

exploration has been an enduring challenge in Human-Computer Interaction (HCI). Early examples 

include automated teller machines and public information kiosks that people walk up and use. A 

more contemporary example is the World-Wide-Web (WWW or Web), where users may be skilled 

in general website navigation, but lack prior knowledge of where the desired information resides in 

varied and constantly evolving websites. Both Franzke (1995) and Cox (2002) suggested that users, 

who have some experience in a software application or device, or other similar software 

applications or devices, may be more likely to attempt and be successful at exploration. These users 

may only use the software sporadically or are only familiar with parts of the software, compared to 

skilled users who know exactly what to do in the UI to accomplish a task, and novice users who lack 

too much knowledge in both the design of the UI and the task domain to be successful in 

exploration. To support this group of users who are not complete experts or novices, UI design 

should support use through exploration. 

Fortunately, HCI practice and research has risen to this challenge. Iterative user-testing is an 

effective but costly method to develop UIs that support use through exploration. A complementary 

method is to use modeling tools that can generate predictions of user exploration given a UI and a 

task. Predictive modeling tools can help evaluate and weed out a larger number of early UI designs. 

Model predictions can also inform the design process by highlighting the probable causes that 

might lead to poor user task performance. Predictive human performance models have been 

successfully used to evaluate and design UIs for skilled routine interactive tasks (John & Kieras, 

1996). If users have to explore and learn an unfamiliar UI, models such as CE+ (Polson and Lewis, 

1990), IDXL (Rieman, Young & Howes, 1996) and LICAI+ (Kitajima, Soto & Polson, 1998) describe 

how knowledge representation, mental model construction and label-following drive user behavior 

during exploration. More recent models like MESA (Miller & Remington, 2004) and SNIF-ACT 2.0 

(Fu & Pirolli, 2007), and tools like Bloodhound (Chi et al., 2003) and AutoCWW (Blackmon, Kitajima 

& Polson, 2005) have focused on predicting user exploration of websites and demonstrated how 

predictions can inform UI design. These models of user exploration employ the common concepts of 

label-following and information scent, that the user’s choice is partly determined by the semantic 

relevance between the user’s goal and the options presented in the UI. 

However, there are other factors beside information scent (or infoscent for short) that influence 

exploration and the likelihood of success, and models and tools that do not consider these factors 

would make less accurate predictions. The goal of this dissertation is to include some of these other 

factors in a process model and modeling tool for more accurate predictions of user exploration, to 

better inform UI design. 

1.1 RESEARCH GAPS IN MODELING 
In addition to infoscent, the layout of the UI also affects the choices made during exploration, 

because a user is not likely to select an option that he or she did not look at and evaluate, and 

competing options (i.e. options that are semantically relevant to a particular task but are incorrect 

for the task) seen before the correct option might be chosen instead. Furthermore, the spatial and 
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semantic grouping of options in a UI also affects user exploration, where competing options nested 

inside a group with a competing group heading (i.e. a text label identifying a group) was found to be 

especially problematic for successful exploration (Blackmon et al., 2005; Kitajima, Polson & 

Blackmon, 2007). Although infoscent, visual search, layout position and grouping affect user 

exploration, prior research like Bloodhound and AutoCWW consider only a subset of these factors 

in their model predictions, which could result in inaccurate predictions when these factors matter 

and interact in the UI and task. For example, Section 3.1 describes an analysis of participant data 

and AutoCWW predictions that was done as part of this dissertation, where predictions did not 

match data at a more detailed level of analysis when visual search and layout position were not 

considered together with infoscent. 

To address these gaps, this dissertation contributes a new modeling tool called CogTool-Explorer, to 

make more accurate predictions of goal-directed user exploration compared to prior modeling 

tools. The research work in this dissertation primarily focuses on the modeling and predictions by 

CogTool-Explorer, with a secondary focus on making CogTool-Explorer into a tool for practitioner 

use. The thesis of this dissertation is: 

A modeling tool for goal-directed user exploration of user-interfaces, that considers 

the information scent, the visual search process, and the layout and grouping of 

options in the user-interface in concert, can make more accurate predictions of user 

exploration compared to tools that do not. 

1.2 MODELING TOOL FOR PRACTITIONERS 
To encourage HCI practitioners to use modeling tools alongside user testing and other HCI 

methods, it must be easy to set up the model for a given UI and task, run the model and obtain 

prediction results. However in most prior research, such as CE+, IDXL and LICAI+, the research 

effort focused on implementing, testing and refining theory, and was not explicitly concerned with 

the implementation of a more flexible tool for modeling UI designs beyond the designs used in the 

particular research project. Later research on tools like Bloodhound and AutoCWW made it 

possible for practitioners to use Bloodhound’s and AutoCWW’s underlying predictive models 

without the need to write or edit software code. Both tools are tailored to model exploration of 

webpages and websites. In Bloodhound, the practitioner can specify an entire website by entering 

its Web address. In AutoCWW1, the practitioner has to manually enter the text label of links from 

the webpages being modeled. 

The approach in this dissertation is to implement CogTool-Explorer as part of an existing modeling 

tool called CogTool (John, Prevas, Salvucci & Koedinger, 2004). CogTool is a publicly available 

modeling tool2 that can predict skilled performance times from tasks demonstrated on a mockup of 

a UI design. Compared to earlier established modeling methods, CogTool reduced the time taken by 

both expert and novice modelers to create a correct model of skilled interactive behavior by an 

                                                             
1 Accessed on January 17, 2011 at http://autocww.colorado.edu/~brownr/ACWW.php 

2 Downloaded on January 17, 2011 from http://cogtool.hcii.cs.cmu.edu/ 
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order of magnitude, and significantly reduced the variation between novice modelers in predicting 

the task execution time of skilled interactive behavior (John, 2010). In CogTool, the practitioner can 

create a mockup of a UI by dragging and dropping standard UI widgets such as buttons, menus and 

links, from a palette of widgets onto frames. A frame represents a display state in the UI. The 

practitioner can specify how interface actions on a widget, such as a mouse button press or click, 

changes the display state by drawing transitions from that widget in its frame to another frame. The 

practitioner can easily create a predictive model of skilled behavior by demonstrating the exact 

interaction steps of a task in the UI mockup. On a single command to “go”, CogTool will run the 

model and generate the prediction. 

In CogTool-Explorer, the practitioner will provide a text description of the exploration goal and on a 

single command to “go”, the CogTool-Explorer model will explore and interact with the UI mockup 

to attempt to complete the task. The practitioner can then view and save the prediction results from 

CogTool-Explorer. To support the new requirements and functionality of CogTool-Explorer, this 

dissertation adds to CogTool new menu options, dialogs and supporting modules for creating large 

UI mockups, specifying group relationships in the UI mockup and to generate the infoscent scores 

that will be used by the model. Through this integration of CogTool-Explorer into CogTool, the hope 

is that it will extend the success of CogTool, and thus CogTool-Explorer, in delivering usable 

modeling to HCI practitioners. 

1.3 ORGANIZATION OF DISSERTATION 
Section 2 reviews related work on goal-directed user exploration in HCI, focusing on their key 

findings and limitations. Section 3 synthesizes the outcomes from the review of related work and 

highlights the three research gaps that are the focus of this dissertation. Section 4 presents 

CogTool-Explorer, describing in detail the modeling and implementation work done to address 

these research gaps, and the test results from comparing CogTool-Explorer to both human data and 

AutoCWW predictions. Section 5 concludes with the contributions, limitations and future work of 

this dissertation research. Appendices A and B present further UI designs that pertain to the 

integration of CogTool-Explorer into CogTool, and Appendices C and D contain the source code of 

the CogTool-Explorer model and the script that was used to process the model’s log file. 
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2 RELATED WORK 
Section 2.1 reviews related observational studies and surveys that found evidence for goal-directed 

user exploration in various real-world computing task environments. Section 2.2 reviews related 

experimental studies that identified some of the factors that influence the choices made during user 

exploration. Section 2.3 reviews theories and models that were developed to explain the user 

exploration process and replicate results from the experimental studies. Section 2.4 reviews 

findings from eye-tracking studies of visual search that have a bearing on user exploration. Section 

2.5 reviews related work to develop accurate device models of the UI on which exploration by a 

model takes place. Section 2.6 reviews related work to develop modeling tools intended for use by 

HCI practitioners. 

2.1 OBSERVATIONAL STUDIES AND SURVEYS 
Rieman (1994; 1996) had 14 participants keep a week-long log of their daily work activities, to find 

out how often they had to explore in their normal work activities. Whenever the participants 

“learned something new about their computer system or some other equipment in their work” 

(Rieman, 1994, p. 51), they were to record the event and the strategy or strategies they used. A 

surprising finding was the low occurrence of about 1 learning event for every 8 hours of computing 

time, although Rieman noted that the recorded events were of varying complexities and at different 

grain sizes, so a single recorded event could have been a number of individual events. The 

interesting finding was “the similarity in the learning strategies recorded across a very wide range 

of situations and users” (Rieman, 1994, p. 59) and that there was “significant evidence that the 

three preferred strategies are trying things out, reading the manual and asking for help” (Rieman, 

1994, p. 59). Participants reported using the strategy of “tried different things until it worked” for 

over half (37 out of 60) of all recorded learning events in computer-based activities. 

At the end of the dairy study, Rieman conducted structured interviews with the participants. When 

asked “when you get a new piece of software, how do you learn to use it?” (Rieman, 1994, p. 62), 

half the participants (7 out of 14) identified “exploring its functionality, usually in the context of 

actual tasks” (Rieman, 1994, p. 63) as one of the ways to familiarize themselves with the software. 

When asked how they figured out the way to do something they did not know in a program they 

already knew, more than half of the participants (9 out of 14) identified trying things out or 

exploration as the first strategy they used. The interviews also revealed that when the participants 

used the exploration strategy, all but one (13 out of 14) did so in the context of a task. Participants 

felt that goal-directed exploration was more productive and could be made relevant to actual work 

activities. Only one participant reported doing task-free exploration of new software. 

The above investigations by Rieman were before the Web became a major real-world computing 

activity. Byrne, John, Wehrle and Crow (1999) conducted a video and verbal protocol study of Web 

use and found that the times spent on Locate (finding that information or link on a webpage, which 

typically requires some visual search) and Go To (any activity which caused the browser to display 

a particular webpage) activities were ranked second and third highest, after the time spent on Use 

information activities. In contrast, the time spent on Configure (changing the state of the browser, 

such as the size, location and number of browser windows) and React (when the browser demands 
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something of the user typically in the form of responding to a dialog box) activities combined was 

less than any one of these top three activities. This suggests that exploration on the Web is more 

about finding and using information. The focus of exploration is now on the hyperlinked UI of 

varied and constantly evolving websites and not on the UI of the browser application. 

Morrison, Pirolli and Card (2001) analyzed a survey on Web activities and found that 96% of 

information seeking activity on the Web was searching for a particular or multiple pieces of 

information triggered by a goal. The other 4% were repeated visits to monitor information updates 

and general searching for information not triggered by a goal. This suggests that information 

seeking on the Web, like the exploration of software and devices by the participants in Rieman 

(1994; 1996), was almost always done in the context of a goal-directed task. 

The results from these studies suggest that goal-directed user exploration does indeed happen in 

real-world computing tasks. Exploration of the UI to learn a new piece of software or to figure out 

how to perform a task in existing software was a preferred approach; a strategy at least as often 

used as reading manuals and asking for help. In user activities on the Web, exploration of websites 

to locate desired information was the dominant activity, which is not surprising considering the 

varied and constantly evolving designs of websites. In both cases, exploration was almost always 

done in the context of a task goal. 

2.2 EXPERIMENTAL STUDIES 
Franzke (1994; 1995) conducted one of the first detailed experiments on computer users using 

unfamiliar software for the first time. Seventy-six participants, who all had experience with 

Macintosh computers but had never used a graphing software application, were given a task 

description to draw and modify graphs using one of four graphing software applications. Two of 

these were versions of an application called Cricket Graph (Figure 1), which was the subject of 

modeling in later research (discussed in the review of IDXL and LICAI+ in Section 2.3.1). The key 

result from the study was that participants took more time to select the correct option on the 

screen if the semantic distance between the label of the correct option and the task description was 

larger. Franzke defined 4 levels of semantic distance in increasing order: 

1. Overlap – words that were identical to words as presented in the task description, such as if 

the goal was to “create a graph” and the menu item had the label “graph” 

2. Synonym – words that were synonymous to words in the task description, such as if the 

goal was to “create a graph” and the menu item had the label ‘‘chart’’ 

3. Inference – words that were semantically related to words in the task description but 

required some inference, such as if the goal was to “create a graph” and the menu item had 

the label ‘‘drawing tools’’ 

4. No Link – words that had no direct semantic link to words in the task description, such as if 

the goal was to “create a graph” and the menu item had the label “file”. 

Franzke also identified two other factors that increased the time participants took to select the 

correct option on the screen. One was the number of options on the screen. The more options there 
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were, the longer the exploration time, especially if the correct option had a poor label (i.e. large 

semantic distance from the goal). The other factor was hidden options, where participants “took 

longer to discover direct manipulation interactions on unlabeled objects, such as double-clicks on 

graph objects, drag-and-drop operations, etc.” (Franzke, 1995) 

Blackmon and colleagues (2002; 2003; 2005) and Kitajima et al. (2007) conducted and analyzed a 

series of experiments where participants were presented with the text description of a search goal 

for an encyclopedia article and asked to navigate a main webpage (Figure 2) or a 2-level hierarchy 

of webpages (Figure 3) to find the target webpage which contained the article. The link labels were 

short texts describing encyclopedia topics. The topics links were further grouped into related topics 

and each group was given a non-interactive heading label (on the main webpage) or an interactive 

heading link (in the 2-level hierarchy of webpages). Selecting a topic link would display a webpage 

that listed all the encyclopedia articles under that topic. 

Blackmon et al. used Latent Semantic Analysis (LSA; Landauer, McNamara, Dennis & Kintsch, 2007) 

to compute an engineering approximation (LSA cosine value between two LSA document vectors) 

of the semantic similarity between the text of each topic link and the goal description, and between 

the text of each heading label/link and the goal description. They found that participants took more 

clicks to find the target webpage when the target webpage was located under a topic link that was 

computed to be weakly related to the goal, and took less clicks when the topic link was strongly 

related to the goal. This result is in agreement with Franzke’s semantic distance, except that 

Franzke scored the semantic distances between on-screen labels and the task description by hand. 

Blackmon et al. also used LSA to compute an engineering approximation of participants’ familiarity 

with the text of each topic link (LSA term vector length and term frequency count in the semantic 

space that represented the reading knowledge level of the participants). They found that 

Figure 1: The Cricket Graph menu interface (from Rieman et al., 1996) 
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participants took more clicks if the correct topic link was computed to be unfamiliar to the 

participants. 

Blackmon et al. (2005) further found that participants took more clicks to find the target webpage if 

there were competing links on the webpage (i.e. topic links that were computed to be similar to the 

goal but did not lead to the target webpage), especially when the competing links were nested 

under a competing heading (i.e. a heading label/link that was computed to be similar to the goal but 

whose group did not contain any topic links that led to the target webpage). 

These experimental studies increased our understanding of one of the key factors that influence 

goal-directed user exploration, namely the semantic relevance of the options presented in the UI 

with respect to the exploration goal. For most well-designed UIs, a reasonable assumption is that 

options are appropriately labeled. By label-following, users are more likely to be successful in 

exploration if they select options with labels that are semantically relevant to the goal. 

Furthermore, while the semantics of individual options matter, the semantics arising from 

organizing structures such as groups and group headings also affect exploration success. 

Figure 2: Example of a main webpage layout in Blackmon et al. (2002; 2003; 2005) 
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2.3 THEORIES AND MODELS 
Theories and computational models of goal-directed user exploration seek to explain the findings 

and replicate the results from observational and experimental studies. Pioneering theoretical and 

modeling research was done in the larger context of skill acquisition in HCI through learning by 

exploration. The research question in CE+, IDXL and LICAI+ was how users explore and learn a new 

software application, and how learning by exploration affects further exploration and improves 

task performance. 

The advent of the Web presents a different task environment for goal-directed exploration, where 

finding information from within webpages in websites is the dominant activity (Byrne et al., 1999; 

Morrison et al., 2001). Research in this domain focuses more on the intricacies of label-following in 

determining exploration success, and less on the discovery and learning of interface actions on UI 

widgets, possibly because the majority of webpages on the Web do not support interface actions 

other than a mouse click on a text or graphic link. Some models have a visual search process, and 

models differ in their modeling approach, derivation of infoscent, representation of the device UI 

and the extent of implementation. Table 1 provides a summary of the theories and models reviewed 

in the following sub-sections. 

 

Click! 

Figure 3: Example of a 2-level hierarchy layout in Blackmon et al. (2002; 2003; 2005) 
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Table 1: Comparison of related work and CogTool-Explorer by scope of exploratory behavior, modeling approach, factors 
considered, extent of model implementation and implementation as a modeling tool for practitioner use. A white cell indicates 
non-consideration and darker shades indicate different or progressively more sophisticated consideration. See Notes for details. 
 
Notes: 
[a]  CoLiDeS inherits from LICAI+ and adds a visual attention cycle [b]. 
[b]  CoLiDeS makes reference to visuospatial bottom-up processes and knowledge-driven top-down processes for its visual attention cycle and 

globally selects the optimal group or option. 
[c] Bloodhound is not publicly available but is available for licensing. 
[d] MESA is neutral as to the actual order in which the links are evaluated by randomly ordering links for each run and then taking 

performance averages across many runs. 
[e]  ACWW inherits its modeling approach from CoLiDeS and globally analyses all groups and links on a webpage for navigation problems. 
[f]  SNIF-ACT 2.0 assumes a left-right then top-down visual search path over the links on a webpage and encodes the ordering before the 

model runs. 
[g]  DOI-ACT prefers to shift visual attention further afield to the right, which assumes knowledge specific to the DOI tree UI layout, is different 

from the eccentricity heuristic favored by other models of visual search and may not be appropriate for other UI layouts in general. 
[h] DOI-ACT uses information scent scores from human raters as well as algorithmically assigned scores. 
[i] DOI-ACT assumes top-down visual search over the nodes in a group, but uses the absolute xy-coordinates of groups when evaluating and 

selecting a group. 



 
10 

2.3.1 CE+, IDXL AND LICAI+ 
Polson and Lewis (1990) combined three components into the CE+ model to give an account of 

learning by exploration: 

1. Cognitive Complexity Theory (CCT; Kieras & Polson, 1985) to execute production rules and 

run the model. A production rule specifies a list of clauses and a list of actions. A rule will 

“fire” and execute its actions if the state of the model satisfies its clauses. Productions rules 

coordinate the execution of the second component. 

2. A label-following variant of the hill-climbing strategy to choose among options. In hill-

climbing, the strategy is to select the option that appears to offer the greatest progress 

toward the goal (Greeno & Simon, 1988). CE+ chooses the option whose description 

overlaps most with the goal, provided that the option has not been tried before. 

3. EXPL (Lewis, 1986; 1988) to compare the prior display state of the system with the display 

state after an interface action was taken, and apply one of three heuristics to infer a causal 

relationship. This learned relationship is then encoded as a production rule which the CCT 

component may fire in the future. 

While each of the above components was implemented as executable models in their own prior 

research, CE+ was not integrated into a single executable model (Table 1: Model Implementation). 

Instead, Polson and Lewis presented an account of a few hill-climbing and learning steps under the 

control of production rules in a “hand simulation” of the model. 

Rieman et al., (1996) used both empirical observations from the Cricket Graph task in Franzke’s 

(1994; 1996) experiment and theoretical arguments to define the Iteratively Deepening 

Exploratory Learning (IDXL) model. Like CE+, IDXL draws upon several separate models to account 

for the range of behavior in exploratory learning (Table 1: Scope of Exploratory Behavior). In the 

Cricket Graph task, participants were given a task description, but not step-by-step instructions, to 

draw and modify graphs using the software Cricket Graph. IDXL has an instruction-taking model of 

how participants might learn task instructions, and an analogy model of how participants can map 

instructions or past experience to novel situations.  

IDXL has a guided depth-first search with iterative deepening (gDFID) strategy to model the 

exploration of pull-down menus in Cricket Graph that preceded the selection of a menu item (see 

Figure 1 for pull-down menus in Cricket Graph). Guided by the heuristic to limit its search to items 

semantically related to the task, the model serially scans the hierarchy of pull-down menus in an 

iterative-deepening process. The process iteratively scans deeper submenus and iteratively applies 

more costly comprehension methods to further evaluate menu items. At each step after a menu 

item is evaluated, the model may scan another menu item, further evaluate a menu item or choose a 

menu item that it found satisfactory. Rieman et al. stressed that large scale patterns of behavior 

should emerge out of local decisions. Through this serial evaluation process, IDXL’s behavior 

reflects local decisions on individual labels, in contrast to LICAI/LICAI+’s approach (discussed 

below) of evaluating a large set of labels simultaneously (see Table 1: Modeling Approach). 
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In evaluating the IDXL model, Rieman et al. stated that the goal of IDXL was to achieve a qualitative 

match to behavioral patterns observed in participants. The implemented IDXL model addressed the 

first few steps of the Cricket Graph task, with the rest of the evaluation done by a qualitative 

comparison of the model’s behavior to observed participant behavior (Table 1: Model 

Implementation). 

Kitajima and Polson (1997) created the Linked Model of Comprehension-Based Action Planning 

and Instruction Taking (LICAI), the predecessor of LICAI+, to model the formation of an exploration 

goal from task instructions and the selection of actions during exploration in the same Cricket 

Graph task. LICAI is based on the Construction-Integration (CI; Kintsch, 1988; 1998) framework 

that is developed to model text comprehension. The basic mechanism is the CI cycle: the 

construction of a network of propositions representing the reader’s goal, the next sentence read and 

existing knowledge, followed by the integration of this network by spreading activation through the 

network. The most activated nodes in the proposition network at the end of the integration 

represent the interpretation of the text. 

LICAI uses the basic CI framework to model the formation of an exploration goal from task 

instructions as text comprehension. LICAI extends the CI framework to handle interface actions by 

encoding not just the labels of on-screen options in the proposition network, but also the actions 

afforded by these on-screen options. A new integration process first identifies the three most 

activated options, followed by a second integration to identify the most activated interface action. 

The proposition network contains all on-screen options at once. This means that LICAI globally 

identifies the three most optimal on-screen options, in contrast to the serial evaluation and 

localized decisions in IDXL (Table 1: Modeling Approach). The follow-up model, LICAI+ (Kitajima et 

al., 1998), adds the learning and recall of previous interface actions to affect future exploration. 

CE+, IDXL and LICAI+ seek to provide an account for a range of user behaviors during exploration 

(Table 1: Scope of Exploratory Behavior). All three models are concerned with the discovery, 

learning and knowledge of interface actions. In IDXL and LICAI+, this might had been motivated by 

participants who were unaccustomed to the direct-manipulation intensive UI of a graphing 

software application such as Cricket Graph. All three models make exploration choices based on 

label-following. In these models, label attractiveness for the task was manually specified, whereas 

many subsequent models use automated methods to compute an engineering approximation of 

label attractiveness (Table 1: Information Scent). Subsequent models also use either the serial 

evaluation and localized decision approach like in IDXL, or the global evaluation and decision 

approach like in LICAI+ (Table 1: Modeling Approach). 

2.3.2 COLIDES 
Comprehension-based Linked-model of Deliberate Search (CoLiDeS; Kitajima, Blackmon & Polson, 

2000; 2005) is an extension of LICAI/LICAI+ for Web navigation. CoLiDeS adds an attention CI cycle 

when a user encounters a webpage with many links (Table 1: Scope of Exploratory Behavior, notes 

[a] and [b]). The attention cycle parses the webpage into sub-regions and focuses attention on a 

sub-region most similar to the user’s goal. The action selection CI cycle from LICAI then identifies 

the few most attractive links from the attended-to sub-region and then the most attractive interface 



 
12 

action. Both cycles globally identify the optimal choice. CoLiDeS also proposes five independent 

factors that combine to measure the attractiveness of a sub-region or a link with respect to the 

exploration goal: 

1. The degree of semantic similarity between the user’s goal and the sub-region’s heading or 

link label. A more similar heading or link is more likely to be selected. 

2. Whether there is an adequate level of relevant background knowledge to successfully 

elaborate the sub-region’s heading or link label. A heading or link that triggers an 

inadequate level of relevant background knowledge is not likely to be selected. 

3. Whether a word used in the heading or link label is a low-frequency term in the user’s 

background knowledge. A heading or link that is a low-frequency term is not likely to be 

selected. 

4. The frequency with which the user has encountered the screen widget or specific heading 

or link. Screen elements on frequently navigated paths are more likely to be selected. 

5. Whether there is a literal matching, partial or complete, between the user’s goal and the 

heading or link (e.g., looking for information about Type 2 Diabetes and seeing a link labeled 

“Type 2 Diabetes”). A heading or link with a literal match to the user’s goal is more likely to 

be selected. 

CoLiDeS has not been implemented into an executable model (Table 1: Model Implementation, note 

[b]), but has led to the development of an analytical method called Cognitive Walkthrough for the 

Web (CWW; Blackmon, Polson, Kitajima & Lewis, 2002) and a tool called Automated Cognitive 

Walkthrough for the Web (AutoCWW; Blackmon, Kitajima & Polson, 2005). AutoCWW implements 

the CoLiDeS concept of sub-regions, and the first three of the five factors listed above using LSA 

computed measures. However, information about sub-regions and links within sub-regions entered 

into AutoCWW by the practitioner does not indicate layout position (Table 1: Layout Position). 

Section 3.1 describes an analysis of participant data and AutoCWW predictions where predictions 

did not match data at a more detailed level of analysis because layout position was not considered. 

Section 2.6 describes the AutoCWW tool in more detail. 

2.3.3 INFORMATION FORAGING THEORY, WUFIS AND SNIF-ACT 
Information Foraging Theory (Pirolli & Card, 1997; Pirolli, 2007) seeks to explain human 

information-seeking and information-usage behaviors, on the basis that information seekers are 

adaptive and rational, and will modify their strategies or the information structure in the task 

environment to maximize information returns from information-seeking activities. Two concepts in 

Information Foraging Theory, namely Information Patch and Information Scent, are used in the 

models Web User Flow by Information Scent (WUFIS; Chi, Pirolli, Chen & Pitkow, 2001), Scent-

based Navigation and Information Foraging in the ACT cognitive architecture 1.0 (SNIF-ACT 1.0; 

Pirolli & Fu, 2003) and SNIF-ACT 2.0 (Fu & Pirolli, 2007), to explain and predict goal-directed 

exploration of websites. In these models of Web exploration, information patch refers to individual 

webpages, sub-sites of webpages, or entire websites, between which users navigate. Information 
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scent refers to the assessment of proximal cues, such as the text label of a link on the current 

webpage, on how likely the link will lead to webpages with information that satisfy the task. 

Information scent drives label-following behavior. 

WUFIS (Chi et al., 2001) models the probability distribution of users following each link on a 

webpage. These probabilities are based on the information scent of each link given the goal 

description, and are computed using Term Frequency by Inverse Document Frequency (TF.IDF), a 

common technique in statistical natural language processing. WUFIS represents these webpages, 

links and probabilities in a matrix, represents the goal in a vector, and simulates the flow of users 

through the website by iterative matrix multiplication. The matrix multiplication over entire 

webpages of links implements a global decision that optimally flow users through all links based on 

their information scents. The outcome is a probability distribution of the webpages users are likely 

to end up in the website. However, its matrix representation and multiplication approach do not 

capture or consider the layout position of links on a webpage (Table 1: Layout Position), thus, may 

have the same problem as AutoCWW where model predictions may not match participant data at a 

more detailed level of analysis when layout matters. WUFIS is the underlying prediction model in 

the tool Bloodhound and Section 2.6 describes Bloodhound in detail. 

SNIF-ACT 1.0 (Pirolli & Fu, 2003) is the first of two process models of Web navigation based on 

Information Foraging Theory and implemented in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998; Anderson et al., 2004). SNIF-ACT 1.0 models the process of a user visiting a webpage, 

evaluating the links on the webpage, selecting a link to go to a new webpage, or going back to a 

previous webpage. On visiting a webpage, the infoscent of each link is computed using Pointwise 

Mutual Information (PMI), as an approximation to the spreading activation in human declarative 

memory when assessing inter-word relatedness. Each link on the webpage is represented by a 

production rule that if fired will select that link. All rules then compete and the rule with the highest 

utility (i.e. infoscent) fires. Through this process, SNIF-ACT 1.0’s assumes that all the links on a 

webpage get evaluated before the decision to globally select the best link (Table 1: Modeling 

Approach). The model does not capture the layout position of links, thus link selections are not 

influenced by layout position (Table 1: Layout Position). Fu and Pirolli (2007) further analyzed 

participant performance data and found that while the infoscent of a link predicted participants’ 

choices better than the on-screen position of the link, participants did tend to select links located at 

the top of the webpage over those located at the bottom of the webpage. 

SNIF-ACT 2.0 (Fu & Pirolli, 2007) removes the assumption that all links get evaluated. In its place, 

SNIF-ACT 2.0 serially evaluates each link on the webpage and uses a Bayesian Satisficing process 

that adaptively decides when to stop evaluating links on a webpage and select the best one so far. 

This local decision to stop or continue is not fixed, but is dependent on the infoscent of the links 

that have been evaluated so far (Table 1: Modeling Approach). However in SNIF-ACT 2.0, the links 

on the webpage are encoded left-right then top-down into a linear list which the model evaluates 

serially. This ordering may not be appropriate for other UI layouts (Table 1: Layout Position, note 

[f]). Fu and Pirolli (2007) noted that “SNIF-ACT was developed at a level of abstraction that was not 

sensitive to different visual layouts of the webpages” (p. 400) and that a “theory of attention 
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allocation as a function of different visual layouts is definitely important in predicting navigational 

behavior” (p. 400). 

2.3.4 MESA 
Method for Evaluating Site Architectures (MESA; Miller & Remington, 2004) models the interaction 

between website architecture (the number of links per webpage and the depth of the website), 

quality of links (infoscent) and human cognition limitations (serial evaluation of links due to visual 

attention and limited working memory). Like SNIF-ACT 2.0, MESA simulates the exploration 

process one step at a time. MESA is constrained to focus on and evaluate one link at a time to reflect 

the limitation of human visual attention. MESA uses a threshold strategy where the model 

immediately selects the first encountered link with an infoscent that exceeds a fixed threshold 

value. The threshold strategy is combined with an opportunistic strategy that will lower the 

threshold value if there are no links on the webpage that exceeds the original threshold value. The 

opportunistic strategy will then scan the webpage again and select the first encountered link that 

exceeds the lower threshold value, or if none exceeds the threshold value, the model will back up to 

the parent webpage. To reflect limited human working memory, MESA does not remember all the 

threshold values it used as it traverses the webpages. This means that after the threshold value is 

lowered, the model will henceforth select less relevant links as links get evaluated. 

MESA’s serial evaluation process and cognitive limitations mean that later link selections and 

webpage visits depend on the links and webpages already visited. The current threshold value 

depends on what other webpages have already been visited on the exploration path and a lowered 

threshold value may result in additional links being selected. Miller and Remington specifically 

contrasted this local decision process of MESA to the global decision process of WUFIS (Table 1: 

Modeling Approach, note [d]). However, MESA’s focus is on site structure and not on the structure 

or layout of links in a webpage. MESA’s representation of the UI has a fixed order in which links get 

evaluated for each run. Miller and Remington (2004) explained that “MESA is neutral as to the 

actual order in which the links are evaluated” (p. 233) and that “MESA’s representation establishes 

a fixed order in which links are evaluated for each run. For our simulations, we can remove the 

effect of order by randomly ordering links for each run and then taking performance averages 

across many runs” (p. 234). The authors further noted that they “have not considered the effect that 

grouping or ordering links has on navigation times” (Miller & Remington, 2004, p. 261) (Table 1: 

Grouping and Layout Position). Like AutoCWW and WUFIS, MESA does not capture or consider the 

layout position of links on a webpage, thus, may have the same problem as AutoCWW where model 

predictions may not match participant data at a more detailed level of analysis when layout 

matters. 

2.3.5 EXPLORATORY ACT AND NORMALIZATION ASSUMPTION 
Young (1998) and Young and Cox (2000) presented a rational analysis of exploratory choice 

framework that uses the concept of Exploratory Act (EA) to account for both free exploration to 

learn about the device, where the efficiency of the EA is defined to be the information gain (∆I) per 

unit cost (C) of the act, and focused exploration to complete a particular goal, where the efficiency of 

the EA is defined to be the probability (P) that it will lead to the goal (G) minus the cost (C) of 

getting to the goal. At each step in the exploration, the efficiencies of all the EAs possible at that 
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moment are calculated and the EA with the highest efficiency gets selected and executed. This 

framework provides for both free and focused exploration to happen in an interleaved fashion. 

However, normalization between the two different efficiency computations was unresolved (Young 

& Cox; 2000) and not implemented (Cox & Young, 2004). 

A key assumption in the framework is that when an EA makes an assessment of the likelihood (i.e. 

infoscent) that an option will lead to the goal, the assessment is dependent on all the other 

assessments on other options that have been made. This normalization assumption implies that the 

infoscent of on-screen options that have been evaluated will affect the decision of whether to select 

an on-screen option or to continue to assess another option. While the normalization assumption is 

different from the Bayesian Satisficing processs in SNIF-ACT 2.0, the observable outcome from 

these two processes is that the models adaptively decides to continue evaluate another option or 

stop evaluating options based on the infoscent of options that have been evaluated so far. Thus, like 

SNIF-ACT 2.0, the exploration process is serial and based on local decisions. 

Based on this framework and its normalization assumption, Cox and Young (2004) and Brumby and 

Howes (2004) developed models to explain observed behavior in an experiment on menu 

exploration (Brumby & Howes, 2003), where participants were given an information search goal 

and asked to search a vertical menu of 16 items with 1 correct item and 15 distracters. Cox and 

Young’s model is implemented as a LISP program outside the confines of a cognitive architecture. 

The normalization assumption is implemented by simply normalizing each infoscent estimate over 

the sum of all estimates after an assessment or reassessment of a menu item. Brumby and Howes’ 

model is implemented as an ACT-R model. Its normalization assumption is implemented using ACT-

R’s spreading activation mechanism by (1) having a slot for each menu item in its ACT-R goal chunk, 

(2) updating the slot when its corresponding menu item gets evaluated and (3) utilizing ACT-R’s 

sources of activation mechanism to “share” a fixed total amount of source activation through these 

slots to all declarative knowledge chunks associated with the menu items. The higher the activation 

of those knowledge chunks associated with a menu item, the higher the item’s infoscent. 

Normalization takes place because the total amount of source activation is fixed. 

However, in both Cox’s and Brumby’s models, the model is pre-configured with the number of items 

in the menu and that number is essential for the computations involved in the normalization. The 

authors did not offer a psychologically plausible explanation for how the model, and likewise the 

user, would know this number beforehand. 

2.3.6 DOI-ACT 
To investigate the interaction between infoscent and more complex on-screen layouts, Budiu and 

Pirolli (2007) developed DOI-ACT, an ACT-R model of navigation in degree-of-interest (DOI) trees 

(Figure 4). Compared to the linear lists of options and the predominant top-to-bottom order of 

evaluation in SNIF-ACT 2.0, Cox’s and Brumby’s models, the DOI tree lays out options (or nodes) in 

both dimensions on screen. The DOI-ACT model may attend to any group of nodes on the screen, 

although it still evaluates nodes within a group in a serial top-to-bottom order (Table 1: Layout 

Position, note [i]). DOI-ACT has two main components: (1) a visual search component that parses 

the screen into visual groups and selects the most salient one to attend next, and (2) a semantic 



 
16 

component that examines the nodes in the most salient visual group and decides on which one to 

click. To better reflect the taxonomical organization of information in the DOI tree, DOI-ACT uses 

two measures of infoscent: category scent and similarity scent. Category scent measures how much 

the search goal is a member of the class denoted by the label of a node. Budiu and Pirolli collected 

category scent scores from human category ratings of 1760 word pairs via a Web questionnaire. 

Similarity scent is computed using PMI, as is the case in the SNIF-ACT models (Table 1: Information 

Scent, note [h]). 

Each time the model wants to attend to a new visual group, a parallel process calculates the visual 

salience of each visual group on-screen and the one with the highest visual salience is selected. The 

visual salience function is composed of the following factors: 

 Horizontal distance (D) between the center of the group and the node last clicked 

 Number of descendants (N) of the node last clicked that are within the group 

 Category scent (S) defined as either an average of all category scents of previously visited 

nodes in the group, or, if no nodes were visited, the maximum category scent of all the 

parents for all the nodes in the group, and 

 Inhibition factor (I) to reduce the salience of items that have been clicked recently so that 

the model has knowledge of what had been already visited and tend not to select the same 

groups over and over again 

The horizontal distance (D) factor in the salience function means that a group that is further away 

to the right side (positive direction) of the screen is more attractive. Budiu and Pirolli (2007) noted 

that participants, “once they are on the right path, using distance as the main factor is a strategy 

that optimizes the time to the solution (the farthest away descendants of the current node would 

need to be clicked to get to the solution most quickly)” (p. 848). While this may be appropriate for 

Figure 4: DOI-Tree Visualization (Budiu & Pirolli, 2007) 
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the DOI tree layout in Budiu and Pirolli (2007), it may not be appropriate for other UI layouts in 

general (Table 1: Visual Search, note [g]). Section 2.4.1 reviews eye-tracking experiments on other 

types of UI layout that found participants tended to fixate and attend on options nearest to the 

current point of visual attention. 

2.3.7 RESEARCH PROGRESSION IN PRIOR THEORIES AND MODELS 
As shown in Table 1: Scope of Exploratory Behavior, pioneering research (CE+, IDXL, 

LICAI+/CoLiDeS) seek to provide an account for a range of user exploratory behaviors, but may 

have been challenged to implement all the behaviors into a fully executable model (Table 1: Model 

Implementation). Evaluation was by qualitative comparison of the model to observed patterns of 

exploratory behavior. Subsequent research focused on label-following and visual search, and all 

were implemented as executable models. Evaluation of the later models was by quantitative 

comparisons of predictions from model runs to observed participant data. 

All the models reviewed have label-following driven by infoscent, and successive research work 

have identified different components that make up infoscent (Table 1: Label Following). Some 

related work used human ratings or had the modeler assign the infoscent values in the models, 

which was useful and sufficed for the development and testing of theory. Other related work 

developed and used computational methods, such as LSA and PMI, to automatically generate an 

engineering approximation of infoscent, which has been shown to predict label-following behavior 

(Table 1: Information Scent). The use of methods like LSA and PMI remove the assignment of 

infoscent values as a free parameter in the model, and have the potential to make tools like 

Bloodhound and AutoCWW usable for practitioners (Table 1: Tool for Practitioner). 

All the models reviewed use one of two modeling approaches, either a global evaluation of all 

available options and selection of the globally optimal choice, or a serial evaluation of available 

options and selection by local decision that may not be globally optimal (Table 1: Modeling 

Approach). The latter approach reflects the constraint of visual attention and the lower level visual 

search process during exploration, and is used by all the models that consider UI layout position 

(Table 1: Layout Position). In these models, the serial processing of options is accompanied by 

mechanisms to stop and make a selection (e.g. SNIF-ACT 2.0’s Bayesian Satisficing, MESA’s 

threshold value and Young’s Normalization Assumption in Cox’s and Brumby’s models). The serial 

evaluation of options may not necessarily evaluate all available options before a selection is made, 

therefore the order in which options get evaluated directly affects the selections made during 

exploration. 

The order of evaluation is dependent on visual search which is influenced by the layout and other 

visual properties of the UI, and by prior knowledge, strategies or preferences that the person may 

have. SNIF-ACT 2.0 and Cox’s model include UI layout information but the information consist of a 

linear list of options in their on-screen spatial ordering (i.e. before-after) instead of their actual on-

screen positions (Table 1: Layout Position). Brumby’s model includes on-screen positions but the 

UI layout was a relatively simple one-dimensional vertical list of menu items. DOI-ACT has an 

accurate representation of the two-dimensional DOI tree UI but its visual search process assumes 

knowledge specific to the DOI tree UI layout and may not transfer to other UI layouts (Table 1: 
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Visual Search, note [g]). The next two sections will review relevant work in visual search and UI 

device models. 

2.4 VISUAL SEARCH 
Psychological research on visual search (see Wolfe, 1998 for a review) has identified numerous 

basic features (e.g. color, orientation, size and spatial frequency) that are available pre-attentively. 

While simple search targets could be identified pre-attentively (referred to as parallel search or 

efficient search), more complex targets with a conjunction of features have to be searched for and 

examined under attention (referred to as serial search or inefficient search). Pre-attentive bottom-

up processing (stimulus-driven local differences in features that “pop-out” a visual object, and local 

similarities in features that group visual objects) and top-down processing (user-driven control to 

limit features and values, such as a certain color or orientation) guide the subsequent deployment 

of attention in visual search. 

2.4.1 ECCENTRICITY AND INHIBITION OF RETURN 
A factor that influences the deployment of visual attention is eccentricity. Targets take longer to 

locate as their distance from the current point of visual attention increases, which may be due to 

the decline of visual acuity in the periphery, and that it is simply a longer distance for the eye to 

travel. Assuming there is no privileged knowledge favoring certain on-screen objects (as there was 

in the case of DOI trees discussed in Section 2.3.6), the most efficient strategy will be to make the 

shortest possible shift. Rational human behavior to optimize search efficiency will tend to next look 

at nearby objects rather than objects further afield. 

Halverson and Hornof (2006; 2007) modeled the eye-tracking data of participants searching text 

labels in a two-dimensional layout on screen. Instead of following a prescribed visual search path as 

was in their earlier model (Hornof & Halverson, 2003; Hornof, 2004), the new model attends to the 

next label with the least eccentricity from its current point of visual attention. To account for 

human variability, a fluctuation factor (i.e. noise) is applied when the eccentricity of each on-screen 

object gets updated for a new eye position. Fleetwood and Byrne (2006) modeled the eye-tracking 

data of participants searching graphical icons in a two-dimensional layout on screen similar to 

those found in graphical UIs. Their visual search model shifts attention to the next candidate icon 

nearest to the icon that is the current focus of visual attention, as was observed in their 

participants’ eye-tracking data. 

Another factor that influences the deployment of attention is called “inhibition of return” in the 

visual search literature. Although empirical evidence for inhibition of return has been mixed and is 

not well understood, Wolfe (1998) argued that “visual search models with a serial search 

component need to ask how attention ‘knows’ where it has been” (p. 55) and “there must be some 

way to keep track of the loci and/or objects that have been examined and rejected in the course of a 

search” (p. 55). Analysis of eye-tracking data of participants searching text labels (Halverson & 

Hornof, 2006; 2007) and graphical icons (Fleetwood & Byrne, 2006) showed that participants 

rarely fixate on an object more than once. Their visual search models to explain participant data 

implement inhibition of return: the visual search proceeds without replacement, i.e after an on-

screen object has been visually attended and fully identified it will not be attended again.  
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2.4.2 GROUPING 
The pre-attentive, bottom-up stimulus-driven processing of similarities in local features group 

visual objects. Wolfe (1998) noted that “several theories of search rely on grouping mechanisms to 

make conjunction search more efficient” (p. 51) and “most grouping accounts suggest that search 

can be speeded by processing and rejecting distracters in groups rather than one at a time” (p. 51). 

Wolfe (1998) concluded that “probably a truly satisfactory model of search will need low level 

grouping in addition to top-down and bottom-up selection processes” (p. 52). 

From analyzing eye-tracking data of participants searching graphical icons, Fleetwood and Byrne 

(2006) suggested that pre-attentive visual features like icon color and shape made up groups of 

icons, and participants constrained their search to within a group of icons that shared common 

features with the target icon, before moving to a further group that also shared common features 

with the target icon. Their ACT-R model of icon search uses the ACT-R vision module to pre-

attentively identify candidate icons that share features with the target icon. The group-based search 

behavior emerges from the model shifting attention to the next candidate icon nearest to the icon 

that is the current focus of visual attention, i.e. eccentricity coupled with common visual features 

led to group-based visual search. 

Hornof and Halverson (2003) had participants search for text labels in both labeled and unlabeled 

groups. Groups were spatially demarcated on screen and labeled groups had an additional on-

screen label next to the group. All labels were either three-letter words (e.g. BEG, MAX, RED) or 

three-letter pseudo-words (e.g. VIN, KEZ, ZIL) and randomly assigned to groups. In both conditions, 

participants were given the exact target label to search for, and in the labeled group condition, 

participants were also given the exact label of the group where the target label resided. Participants 

completed the search tasks in the labeled group condition faster than in the unlabeled group 

condition. The authors suggested that participants knew or learned to use the strategy of first 

searching for the given group label and then the target text label. Hornof’s (2004) model of these 

visual search tasks employs such a strategy. 

Hornof (2004) explained that semantics was removed from the above text label search tasks by 

using those three-letter words and pseudo-words, and by randomly assigning labels on screen and 

into groups. Halverson and Hornof (2008) began to investigate the effect of semantic grouping on 

visual search by using meaningful group and text labels (e.g. “jewelry”, “anklet”, “bracelet”, 

“cufflink”), varying the semantic cohesiveness of text labels within a group (cohesive versus non-

cohesive) and varying between using labeled versus unlabeled groups (see Figure 5). Participants 

were given the exact target label to search for but were not given the label of the group where the 

target label resided. The main result was that participants completed the search tasks faster when 

groups were cohesive. Halverson and Hornof suggested that participants may judge the semantic 

relevance of a cohesive group after evaluating one or a few labels in the group, and that enabled 

participants to discount and skip a group if the group was not semantically likely to contain the 

target label. In the non-cohesive group condition, it was not possible to discount a group in that way 

and participants had to evaluate the labels more exhaustively. 
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2.4.3 VISUAL SEARCH IN USER EXPLORATION 
Prior research has provided insight into the visual features and processes that guide visual search. 

Eccentricity, inhibition-of-return and grouping have been implemented in models and model 

predictions had good fits to eye-tracking data. However, most prior research had participants 

searching for exact known targets, which is less likely to be the case if the user is unfamiliar with 

the UI and exploring. Experimental results from Blackmon et al. (2005) and Halverson and Hornof 

(2008) showed that semantic grouping affects exploration task performance. More research is 

needed, but it is evident that both the positions and semantics of individual options, and the 

positions and semantics arising from organizing structures on screen, have an effect on exploration. 

For the visual search process to correctly consider layout position and grouping, the visual search 

must take place on an accurate representation of the UI being explored. The next section reviews 

research on UI device models. 

Figure 5: An example layout with semantically cohesive groups, 
group labels and background color in Halverson and Hornof (2008) 
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2.5 DEVICE MODELS 
There are two approaches in some prior research work: the human modeler (1) writes a software 

program that replicates the behavior of the UI being explored, or (2) fills in software data 

structures with information about the UI being explored. An example of the software program 

approach is IDXL, which implemented “a minimal simulation of the Cricket Graph interface with 

which the model interacts” (Rieman et al., 1996, p. 756). The simulation reports to the model the 

menu item that is at a particular location in the menu system whenever the model directs its 

attention to that location. The simulation also responds to actions by the model, such as the 

selection of a menu item, and changes the simulation state to reflect that a sub-menu has appeared. 

An example of the data structure approach is LICAI+, where the modeler writes propositions for 

each on-screen object in the Cricket Graph interface to capture information like text label, action 

afforded, etc. These propositions are then included in the integration process of LICAI+. These two 

approaches in IDXL and LICAI+ provide the modeler with complete control over the device model. 

The modeler can directly change the device model by rewriting software code or changing data 

values, which is convenient for modeling research. However, the software program approach 

requires sufficient knowledge of an additional programming or modeling language to create the 

simulation, and both approaches, especially the data structure approach, involve much manual 

effort on the part of the human modeler; both approaches are not practical for practitioner use. 

A third approach is to provide the process model “direct” access to the actual UI, by automatically 

translating the output from the actual UI into a representation accessible by the model, and 

translating the actions of the model into input on the actual UI. Simulated Hands and Eyes (SHE; 

Misker, Taatgen & Aasman, 2001) and Segmentation/Manipulation (SegMan; Amant, Riedl, Ritter & 

Reifers, 2005) are two examples of this approach. The long-term goal is for the model to interact 

with the same actual UI that people interact with. Practitioners can then bring an actual software or 

device they want to test to the model and use the model like a “black-box”. However, SHE depends 

on software hooks into the actual UI and only works for software written in certain programming 

languages. SegMan uses image-processing techniques on screen-captures of the actual UI but 

sometimes failed to translate parts of the UI. 

A fourth approach strikes a middle-ground between the first two approaches and the third 

approach. The process model interacts with a simulated UI or access data records that represent 

the UI, but the simulated UI or data records are constructed automatically or semi-automatically 

prior to the running of the model. Bloodhound, the practitioner tool implementation of WUFIS 

(discussed in Section 2.6), automatically fills up its data matrix by crawling and parsing webpages 

from a given website. In CogTool, the practitioner can mock up the UI design by dragging and 

dropping standard UI widgets, such as buttons, menus and links, from a palette of widgets onto 

frames (Figure 6). A frame represents a display state of the UI, and interface actions such as a 

mouse button press or click on a widget can be specified by drawing transitions from that widget in 

its frame to another frame. CogTool automatically creates an ACT-R device model from a mockup of 

a UI design. The ACT-R device model is a program that simulates the UI that an ACT-R model can 

look at and interact with. 
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The first two approaches may be more efficient and work well in modeling research for theory 

development like in IDXL and LICAI+, but are too difficult and time-consuming for practitioners. 

The third approach is an attractive goal in the long term, but the automated translation currently 

either only works for some UIs or may mistranslate parts of the UI, thus, more research is needed. 

The third approach also makes testing UI redesigns potentially difficult as it entails modifications to 

the UI of the actual software or device. The fourth approach requires less specialized technical 

knowledge and effort compared to the first two approaches, and provides the modeler or 

practitioner the option to inspect and check the device model for correctness prior to running the 

model. In the case of CogTool, this approach makes it much easier to create and test UI redesigns by 

modifying the UI mockup instead of the actual software or device. 

Figure 6: Mockup of a website UI design in CogTool. CogTool can convert the 
mockup into an ACT-R device model that an ACT-R model can interact with. 
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2.6 MODELING TOOLS 
Automated Cognitive Walkthrough for the Web (AutoCWW; Blackmon et al., 2005) is a publicly 

available tool accessible on the Web3 to help practitioners analyze one or more webpages for 

difficulties users may face during exploration of a website. AutoCWW draws its theoretical basis 

from CoLiDeS and uses LSA to compute engineering approximations of semantic similarity and 

familiarity (Table 1: Modeling Approach, note [e], and Information Scent). To analyze a webpage, 

the practitioner manually enters the text description of likely exploration goals, the heading labels 

of all sub-regions on the webpage and the text labels of all links on the webpage. The analyst then 

flags the correct link or links for each goal, sets up one or multiple analyses with different sets of 

parameters (e.g. different LSA semantic spaces for users of different reading levels, different text 

label elaborations, etc) and submits the analysis request to AutoCWW. AutoCWW analyzes the 

submitted goals, headings and links for potential problems by computing the LSA cosine, its 

measure of semantic similarity, between the text of the goal description and the text of each 

heading, and between the text of the goal description and the text of each link. AutoCWW also 

computes the LSA term vector length and frequency counts of the heading texts and link texts, to 

evaluate if the user, as represented by the selected LSA semantic space, has an adequate level of 

relevant background knowledge to be familiar with the headings and links (see Section 2.3.2 on 

CoLiDeS’ five factors that combine to measure the attractiveness of a label). 

AutoCWW reports if the correct link or links on the webpage might be unfamiliar to the user 

(Unfamiliar Correct Link) or might be too semantically different from the goal to be chosen (Weak-

Scent Correct Link). AutoCWW reports if there are incorrect links that are semantically related to 

the goal and thus compete with the correct link. By analyzing the headings of sub-regions, these 

competing links may be nested under a correct or incorrect heading that is semantically related to 

the goal (Competing Link under Correct Heading or Competing Link under Competing Heading). 

AutoCWW regards a search goal that results in any link being reported with one or more of these 

problems as a goal With Problems, where users are more likely to have difficulties during 

exploration. From the number and types of problematic links identified on a webpage for a 

particular search goal, AutoCWW predicts the mean number of link clicks users will make to select 

a correct link on that webpage for that search goal. AutoCWW assembles the analysis results in 

Microsoft Excel spreadsheets and emails the spreadsheets to the practitioner. 

Bloodhound (Chi et al., 2003) is a Web-based tool to predict the percentage of users that will reach 

the target webpage and be successful in exploration, and the ranking of webpages that users are 

most likely to visit when exploring a website with a search goal. Unlike AutoCWW, Bloodhound4 is 

not publicly available but is available for licensing. Bloodhound provides a Web-based UI for 

practitioners to run WUFIS, which models the probability distribution of an arbitrary number of 

users following each link on a webpage (Section 2.3.3 describes how WUFIS works). To use 

Bloodhound, the analyst submits the Web address of the webpage where exploration starts 

                                                             
3 Accessed on January 17, 2011 at http://autocww.colorado.edu/~brownr/ACWW.php 

4 Retrieved on January 17, 2011 from 

http://www2.parc.com/istl/groups/uir/projects/bloodhound/bloodhound.htm 
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(exploration is limited to the webpages under the same domain as the starting Web address), the 

keywords of one or multiple search tasks and the Web address of the target webpage for each of the 

tasks. Bloodhound uses this information to setup the data matrix in WUFIS and runs the model. 

Bloodhound then displays a webpage that reports the average success rate (percentage of users 

predicted to find the target webpages) over all the search tasks, the success rate for each task, and 

the webpages that were most often visited over all the search tasks. 

Both AutoCWW and Bloodhound provide a UI for practitioners to enter the necessary information 

to setup an analysis or model run, and generate predictions of exploration task performance. Both 

return their predictions in a format that is accessible to the practitioner: spreadsheets from 

AutoCWW and a webpage of results from Bloodhound. Besides AutoCWW and Bloodhound, the rest 

of the models reviewed were not further developed into tools for practitioner use (Table 1: Tool for 

Practitioner). Setting up, running and extracting prediction results from those models typically 

involve software programming, manipulating data formats and managing multiple files, activities 

that are tedious but acceptable for a modeling researcher, but not practical for a HCI practitioner. 
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3 RESEARCH GAPS 
Table 1 summarizes the review of prior related work presented in Section 2. Inspecting the table 

reveals seven research gaps as indicated by the seven columns with a majority of white cells. There 

is a lack of further research on the Goal Formation, Learning and Interface Action aspects of 

exploratory behavior (see these columns in Table 1) after LICAI+/CoLiDeS. This dissertation does 

not seek to address these three research gaps, which are orthogonal to the research focus of this 

dissertation and can be topics for future work. The next research gap in Visual Search ties in with 

and is "manifested" through the two research gaps in Layout Position and Grouping, in terms of 

how visual search over layout position and grouping on screen affect user exploration. Finally, 

there is the research gap from the scarcity of work in developing Tools for Practitioners. 

Table 1 also reveals that automated methods to compute the infoscent scores (present in 7 out of 

13, Table 1: Information Scent) that drive label-following (present in 13 of 13, Table 1: Label-

Following) have been progressively developed and successfully used in a number of prior models 

and tools. This dissertation does not seek to advance the state-of-the-art in algorithms to compute 

the infoscent scores that drive label-following. Instead, this dissertation will utilize a proven 

method like LSA to control for the semantic component of the model while developing the visual 

search, layout position and grouping components of the model. 

This dissertation focuses on the research gaps in Visual Search, Layout Position, Grouping and Tool 

for Practitioner. Sections 3.1 and 3.2 will address Layout Position and Grouping in conjunction with 

Visual Search. Section 3.3 will address Tool for Practitioner. 

3.1 CONSIDERATION OF LAYOUT POSITION 
Only 4 out of the 13 prior related works consider the effect of layout position in conjunction with 

visual search on user exploration (Table 1: Visual Search and Layout Position). Visual search over 

layout position in IDXL and SNIF-ACT 2.0 serially evaluates on-screen options based on their spatial 

ordering (i.e. before-after) instead of their actual on-screen positions. Brumby’s model uses on-

screen positions but the UI layout was a relatively simple one-dimensional vertical list of menu 

items. DOI-ACT includes a more complex two-dimensional UI layout but its visual search assumes 

knowledge specific to the DOI tree UI layout and prefers to shift visual attention further afield to the 

right, which is different from the eccentricity heuristic favored by other models of visual search 

(Fleetwood & Byrne, 2006; Halverson & Hornof, 2006; 2007; Halverson, 2008) and may not be 

appropriate for other UI layouts in general. DOI-ACT further assumes top-down visual search over 

the nodes within a group. In modeling tools, both Bloodhound and AutoCWW do not capture the 

layout of the UI. Their global evaluation processes, inherited from WUFIS and CoLiDeS respectively, 

are neutral to the order in which a person would evaluate the options on the UI. 

However, the layout position of options in a UI may affect the exploration choices actually made, 

because a user is not likely to choose an option that he or she did not look at and evaluate, and 

competing options seen before the correct option might be chosen instead. Figure 7 illustrates this 

with an actual webpage from AutoCWW Experiment 2 (Blackmon et al., 2002), and a modified 

version of the same webpage. Assuming a predominant left-to-right visual scan pattern, the 

expectation is that participants would be more likely to click on the correct link if it appeared in the 
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left column than if it appeared in the right column. If true, this is significant because a user clicking 

on an incorrect link can increase the number of interaction steps and time spent exploring the 

wrong branches in a large and complex website.  

To investigate the effect of layout position, a further analysis of AutoCWW Experiment 2 was done 

as part of this dissertation (Teo and John, 2008, reproduced in detail here). The experiment 

webpages are publicly accessible on the Web and Dr. Marilyn Blackmon generously shared the 

participant log files with us. The experiment had 64 search tasks, 32 of which were attempted on a 

webpage with 32 links in two 16-link columns (Figure 7). Each task was successfully performed by 

22 or 23 participants. We analyzed only the 22 tasks for which AutoCWW judged the correct link to 

be semantically related to the goal, reasoning that if the user could not recognize that the correct 

link as related to the goal, then its position on the webpage would not matter. 

Figure 8 shows the analysis by column position of the correct link on the webpage for the two 

performance measures reported in the AutoCWW experiments: the number of clicks performed on 

the webpage, where the last click was on the correct link (mean clicks on webpage), and the 

percentage of trials where the first click on the webpage was on the correct link (percent first click 

success). Although these measures are highly (negatively) correlated, they represent two subtly 

different usability concerns. Mean clicks is important if a design team has data suggesting that users 

will be willing to explore a bit, but will leave the website if it takes too long to find what they want. 

Percent first click success is important if a usability requirement is expressed as a certain 

Figure 7: A search goal and webpage used in AutoCWW Experiment 2 (Blackmon et al., 2002). 
Each search goal had one correct link on the webpage. The correct link for the goal “Canon law” 
is “Theology & Practices”. AutoCWW identified links “Religious Figures” and “Religions & 
Religious Groups” as competing links that are also semantically related to the goal. The left 
picture shows the original layout. The right picture shows a modified layout with links 
“Theology & Practices” and “Religious Figures” swapped. The hypothesis is that users would be 
more likely to click on the correct link in the modified layout than in the original layout. 
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percentage of users achieving their goals without error. Since these measures are different, we 

carry them through our analysis. 

Participants indeed made significantly fewer clicks when the correct link was in the left column (M 

= 1.12 clicks, SD = 0.13) than in the right column (M = 1.38 clicks, SD = 0.15) (F (1, 20) = 19.0, p < 

0.01). They also had a significantly higher percent first click success when the correct link was in 

the left column (M = 90.4, SD = 7.9) than in the right column (M = 66.4, SD = 19.6) (F (1, 20) = 16.0, 

p < 0.01). These results support our hypothesis and suggest a predominant left-to-right visual scan 

pattern as was also found in eye-tracking studies of visual search in similar text layouts with 

participants from a similar culture (Halverson & Hornof, 2006; 2007). 

We wanted to find out if existing models would be able to predict this effect of layout position on 

participant task performance. The obvious choices were the two modeling tools, AutoCWW and 

Bloodhound, as that meant we could readily generate predictions from these models as intended by 

their authors. Unfortunately, Bloodhound5 is not publicly available. There are 5 other prior related 

works that consider layout (Table 1: Layout Position), however, IDXL is not a fully executable 

model; both Cox’s and Brumby’s models performed exploration in a one-dimensional list of menu 

items but did not describe how their models should explore a two-dimensional layout; the details of 

the algorithm that determines and pre-encodes the sequence of link evaluations in SNIF-ACT 2.0 

were not available; and DOI-ACT assumes knowledge specific to the DOI tree UI layout and uses 

human ratings for category scent scores. Thus, we could not readily create and run these models to 

generate predictions. Although AutoCWW does not consider layout position, we went ahead and 

submitted these tasks to AutoCWW and compared its predicted mean clicks on webpage by column 

position of the correct link. 

We entered the paragraph of text under the line “Item to find” as the goal statement (see top of 

Figure 7), and entered the 2-column webpage of 32 links as 16 links under 2 sub-regions. 

AutoCWW is designed to work with regions that have heading text, but the columns did not have 

heading text. Therefore, we entered the goal text as the heading text for both columns, thus, both 

                                                             
5 Retrieved on January 17, 2011 from 

http://www2.parc.com/istl/groups/uir/projects/bloodhound/bloodhound.htm 

Figure 8: Participants’ mean clicks on webpage and percent 
first click success by target column (Standard error shown) 
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columns were judged by AutoCWW as being related to the goal and all links were eligible to 

compete. We set AutoCWW to use the “General_Reading_up_to_1st_year_college (300 factors)” 

semantic space, and then set AutoCWW to do the default full elaboration on the link texts because 

the original link texts are short, but to do no elaboration on the heading texts because the columns 

are not semantic or categorical groupings of the links. For each task, AutoCWW predicted the task’s 

mean clicks on webpage. 

As expected, AutoCWW did not predict any significant difference between search tasks with the 

correct link in the left column compared to in the right column (F (1, 60) = 0.16, p > 0.05). There are 

two reasons why AutoCWW did not predict the difference in participants’ performance. The first is 

that the information requested by AutoCWW about sub-regions and links within sub-regions does 

not contain any layout position, so essential information is lacking (Table 1: Layout Position). The 

second reason is that the AutoCWW analysis globally evaluates all sub-regions and links base on 

information scent alone (Table 1: Modeling Approach, note [e]). The analysis does not consider 

layout position information, which is not available in the first place. 

We did not submit these tasks to Bloodhound because it is not readily available. Like AutoCWW, the 

webpage and link information that Bloodhound captures does not contain layout position 

information. Bloodhound also globally evaluates all links on a webpage and flow the probability 

distribution of users optimally down each link based on the link’s infoscent. Therefore, we also 

expect Bloodhound would not predict this effect. 

This further analysis of AutoCWW Experiment 2 showed that layout position matters in goal-

directed user exploration but is not predicted if existing models and tools lack a device model with 

layout position information and an evaluation process that uses layout information. To address this 

research gap: 

This dissertation integrates information scent with a visual search process and an 

accurate representation of the UI layout, in a model of goal-directed user exploration. 

3.2 CONSIDERATION OF GROUPING 
Groups in the UI can arise from proximity, color, density, etc. For example, experiments by 

Blackmon et al. (2002, 2003 and 2005) and Halverson and Hornof (2008) had groups demarcated 

by proximity and color (Figures 2 and 5). Analysis of experimental results by Blackmon at el. 

(2005), Kitajima at el. (2007) and Halverson and Hornof (2008) suggested that the infoscent and 

the grouping of on-screen options affect exploration task performance. 

Only 3 out of the 13 prior related works consider the effect of grouping on user exploration (Table 

1: Grouping). CoLiDeS and AutoCWW do consider grouping, but the groups lacked layout position 

information and are globally evaluated and selected based solely on highest infoscent in the UI 

(Table 1: Grouping and Layout Position). DOI-ACT defines groups based on the vertical proximity 

between nodes, considers the groups’ layout positions, and uses a serial evaluation and local 

decision process. However as mentioned earlier, its visual search assumes knowledge specific to 

the DOI tree UI layout and prefers to shift visual attention further afield to the right, which is 
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different from the eccentricity heuristic favored by other models of visual search and may not be 

appropriate for other UI layouts in general. 

Grouping affects user exploration and more research is needed to include groups as a factor in 

modeling goal-directed user exploration. The approach in this dissertation is for the human 

modeler to define the groups and provide the group information to the exploration model, which is 

the same approach taken by Blackmon et al. (2002, 2003, 2005), Halverson and Hornof (2006, 

2007, 2008), and in DOI-ACT. This allows research on how groups affect user exploration to 

progress in parallel with other psychological research on how groups are formed and recognized. 

To address this research gap: 

This dissertation integrates information scent with a hierarchical visual search 

process and an accurate representation of the UI layout that includes grouping, in a 

model of goal-directed user exploration. 

3.3 IMPLEMENTATION AS A TOOL 
Only 2 out of the 13 prior related works implement the research models into tools for practitioner 

use (Table 1: Tool for Practitioner). One approach to speed up this process is to integrate the model 

into an existing modeling tool that has demonstrated success in reducing the effort required of a 

practitioner. One such tool is CogTool (John at el., 2004). CogTool provides facilities for a 

practitioner to create, save and modify a mockup of a UI design, features which are absent from 

AutoCWW and Bloodhound. CogTool includes a model of skilled task performance time, based on 

the Keystroke Level Model (KLM; Card, Moran & Newell, 1980; 1983), and implemented in the ACT-

R cognitive architecture. CogTool automatically creates a KLM when the practitioner demonstrates 

a sequence of interaction steps on the UI mockup, and automatically inserts Mental Operators into 

the KLM, which has been an error-prone step for practitioners. CogTool then executes the KLM 

ACT-R model and presents the predicted task performance times to the practitioner in various 

visualizations, for the practitioner to compare between UI designs and improve the designs for 

better task performance. 

To efficiently make the model of goal-directed user exploration available to the rest of the HCI 

community: 

This dissertation implements the model of goal-directed user exploration as part of 

CogTool. 

The advantage of this approach compared to building a separate new tool is that the existing 

facilities in CogTool that are common to both the KLM and the goal-directed user exploration 

model, such as the ability to mockup a UI design with layout position information, do not have to be 

re-implemented. Tool development effort can focus on adding to CogTool the new facilities that are 

required by the user exploration model, such as the generation of infoscent scores and the 

specification of groups in the UI design. Another advantage is that the new model of goal-directed 

user exploration can reach out quickly to the existing group of CogTool users, and these users can 

benefit from the increased capabilities of CogTool to make predictions of both skilled and 

exploratory behavior on the same UI mockup. 
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For ease of reference, the new model of goal-directed user exploration developed in this 

dissertation and the additions made to CogTool to integrate and support the new model shall be 

referred to as CogTool-Explorer. 
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4 COGTOOL-EXPLORER 
Section 3 presented the three research gaps in modeling goal-directed user exploration that are the 

focus of this dissertation: (1) consideration of layout position, (2) consideration of grouping and (3) 

implementation as a tool. Section 4 presents CogTool-Explorer, a solution researched and 

developed in this dissertation to address these gaps. In particular, Section 4.1 presents modeling 

work done in CogTool-Explorer 1.0 to address the first research gap in consideration of layout 

position. Section 4.2 presents further modeling work done in CogTool-Explorer 1.1 and CogTool-

Explorer 1.2 to address the second research gap in consideration of grouping. Section 4.3 presents 

design and implementation work done to integrate CogTool-Explorer 1.2 into CogTool, to address 

the third research gap in implementation as a tool. Overall, the modeling, analysis and development 

work leading up to CogTool-Explorer 1.2 provide support for the thesis of this dissertation 

presented in Section 1.1. 

Figure 9 presents an overview of CogTool-Explorer. Items in white background indicate 

components and external resources that existed prior to this dissertation, and are used by CogTool-

Figure 9: Overview of CogTool-Explorer. White background indicates 
pre-existing components and external resources. Light blue indicates 
new or refined components contributed by this dissertation. 
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Explorer. Items in blue indicate the new work that was done in this dissertation. 

CogTool-Explorer consists of a model of goal-directed user exploration implemented in the ACT-R 

cognitive architecture (region M). The model simulates a user (region U) with an exploration goal 

and semantic knowledge exploring the UI of a device (region D). The model serially evaluates the 

infoscent of on-screen widgets in the device (in region D) guided by its visual search process and 

knowledge about grouping (in region U). When the model chooses a widget in the UI, the device 

model will update the UI with the next frame and its widgets specified by the transition in response 

to the interface action on the widget. This cycle continues until the exploration goal is met or time 

allowed for the model to run is up. This exploration takes place on a device model that accurately 

represents the UI of the actual device. 

The CogTool-Explorer model is implemented as part of CogTool for use by practitioners (region T). 

In CogTool-Explorer, a practitioner can automatically or manually create the device model that 

represents the UI of the actual device (lower left of region T), automatically extract the text labels of 

widgets from the device model and retrieve infoscent scores based on the widget labels and the 

goal description from an external database (upper left of region T), setup the CogTool-Explorer 

model and specify model parameters (upper right of region T), and run the model to get predictions 

of likely exploration paths (lower right of region T). In the course of developing CogTool-Explorer, 

the model will be evaluated by comparing its predictions to data collected from participants 

performing the same exploration tasks. 

4.1 CONSIDERATION OF LAYOUT POSITION 
Following the analysis of participant data from the two-column layout described in Section 3.1, we 

developed the first CogTool-Explorer model (renamed CogTool-Explorer 1.0 in this dissertation) to 

consider both infoscent and layout position to make more accurate predictions of goal-directed 

user exploration (Teo & John, 2008, reproduced in detail below). CogTool-Explorer 1.0 integrates a 

serial evaluation model, with a visual search process and a UI device model that preserves layout 

positions. These are the three necessary components to consider layout position and CogTool-

Explorer 1.0 uses them all successfully to make more accurate predictions.  

4.1.1 ADD PERCEPTUAL-MOTOR BEHAVIOR 
CogTool-Explorer 1.0 uses the SNIF-ACT 2.0 model to serially evaluate links on the page one at a 

time. The model evaluates the link’s infoscent with respect to the goal, remembers the link as the 

best link if it has the highest infoscent so far in the page, and then decides to either choose the best 

link seen so far in the page, or continues to look at and read another link. Each action is associated 

with an ACT-R production and the production with the higher utility is chosen. CogTool-Explorer 

1.0 uses the same utility update equations as SNIF-ACT 2.0 (see 8: Utility equations in Fu & Pirolli, 

2007) to update the utilities associated with these two productions every time after a link is 

evaluated and then decides which action to take: 
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ReadAnother:          [Eq. 1] 
 
 
ChooseBest:           [Eq. 2] 

 

Fu and Pirolli (2007) explained: 

U(n) represents the utility of the production at cycle n, and U(n+1) represents the 

updated utility of the production at cycle n+1, IS(link) represents the information 

scent of the current attended link, N(n) represents the number of links attended on 

the Web page at cycle n, IS(Best Link) is the highest information scent of the links 

attended on the Web page, k is a scaling parameter. (p. 380) 

Since the model may not evaluate all links on a webpage before making a selection, the order in 

which links are evaluated has a direct effect on its predicted exploration choices. However, the 

original SNIF-ACT 2.0 model did not move a simulated eye and evaluate links in an order that 

reflected how links may be looked at in a webpage, instead it used webpage and link information 

collected by Bloodhound, encoded the links directly into ACT-R declarative memory chunks and 

“looked at” links by retrieving them from declarative memory (Fu, W.-T., personal communication, 

September 18, 2006). In CogTool-Explorer 1.0, we modified the SNIF-ACT 2.0 model with new 

model code to implement the perceptual and motor actions of looking at links on the webpage and 

clicking on the selected link during a model run, and modified the support code to use alternative 

computations of infoscent besides the original PMI function. The selection of an infoscent function, 

and values for several model parameters, will be discussed in Section 4.1.5 about our test of 

CogTool-Explorer 1.0. 

4.1.2 ADD A VISUAL SEARCH STRATEGY 
To guide the newly added perceptual-motor actions in CogTool-Explorer 1.0, we further modified 

the SNIF-ACT 2.0 model to add a visual search strategy based on the Minimal Model of Visual Search 

(Halverson & Hornof, 2007). The visual search strategy is implemented in the ACT-R vision module 

augmented with the EMMA model of visual preparation, execution and encoding (Salvucci, 2001). 

This strategy starts in the upper-left corner of an accurate representation of the webpage 

(described in Section 4.1.3) and proceeds to look at the link nearest to the model’s current point of 

visual attention (xy-coordinates), where “nearest” is subjected to a fluctuation factor. CogTool-

Explorer 1.0 uses the same fluctuation factor as Halverson and Hornof (2007), which is the normal 

distribution with a mean of 1 and a standard deviation of 0.3. CogTool-Explorer 1.0 maintains its 

point of visual attention when the page changes, and exhibits inhibition of return by performing the 

visual search without replacement, that is, on visiting a page, each link may be looked at and 

evaluated by the model at most once, However, in a later visit to the same page, those links may be 

looked at and evaluated again. Eye-tracking studies and modeling by Halverson and Hornof (2006, 

2007) found that such a strategy explained for 59% of all systematic eye-scan patterns in their 

visual search experiments of similar text layouts. 
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4.1.3 PRESERVE LAYOUT POSITION 
For CogTool-Explorer 1.0 to correctly consider the order of serial evaluation, the model must 

interact with an accurate device model of the webpage. CogTool-Explorer 1.0 leverages the ability 

of CogTool to accurately represent a UI design, in particular the on-screen position, dimension and 

text label of every link on the webpage (Figure 6). Earlier versions of CogTool-Explorer required 

webpages to be mocked up by hand. To automate this process, we implemented in CogTool-

Explorer 1.0 the ability to crawl and submit a list of URLs to WebRender (Reeder, Pirolli & Card, 

2001), a webpage rendering tool, to render and extract the position, dimension, text and target URL 

of each link from the actual webpage (later versions of CogTool-Explorer, from CogTool-Explorer 

1.0a onwards in Section 4.2.1.3, use the open source XULRunner instead of the proprietary 

WebRender, and further streamlined and automated the process; Section 4.3.1 describes this in 

more detail). CogTool-Explorer 1.0 then assembles this information into the format that can be 

imported into CogTool to automatically create an accurate UI mockup of all these webpages and 

links. CogTool then converts this mockup into an ACT-R device model, with which the CogTool-

Explorer 1.0 model can interact. 

4.1.4 OPERATION OF COGTOOL-EXPLORER 1.0 
Figure 10 illustrates an example run of the CogTool-Explorer 1.0 model in the two-column layout. 

Given the description of the exploration goal “Canon Law” (paragraph of text under “Item to find” at 

the top of the webpage) and at least one visible link on the current page (underlined text labels), 

CogTool-Explorer 1.0’s point of visual attention starts in the top-left corner of the page (step 1) and 

moves its visual attention to the link “People in the United States” nearest to its current point of 

visual attention (step 2a), evaluates the link’s infoscent with respect to the exploration goal (step 

2b) and remembers the link as the best link if it has the highest infoscent so far in the page. The 

model may then decide to look at and evaluate another link (“Musicians and Composers”, “Theology 

and Practices”, etc, in step 2c) or it may decide to select the best link seen so far in the page (step 3). 

When CogTool-Explorer 1.0 decides to select the best link, it will look back at the best link 

“Theology and Practices”, move a simulated mouse pointer over the link and click on it (step 4). In 

response to the click, the device model follows the link’s transition to the next page, bringing the 

new links into the visual field of the model. Each run of the model can be different because of noise 

in the model, thus, the path of the model on each run is analogous to predicting the exploration 

choices of a single human trial. 

4.1.5 TEST OF COGTOOL-EXPLORER 1.0 
We compared the participant data from the 22 tasks in the two-column layout to predictions by 

CogTool-Explorer 1.0 and by AutoCWW. As explained in Section 3.1, although AutoCWW does not 

consider layout position, there were no models that do consider layout position available to test 

against, thus, we wanted to check that CogTool-Explorer 1.0 performed at least as well as 

AutoCWW. We first directed CogTool-Explorer 1.0 to import the actual webpages used in that 

experiment and automatically create the device model. To be as comparable as possible to the 

AutoCWW analysis, we set CogTool-Explorer 1.0 to use the same LSA values of infoscent as 

AutoCWW used when it evaluated the links. Because those LSA values were from -1 to +1, with 

links related to the goal on the order of +0.5, whereas the original SNIF-ACT 2.0’s infoscent values 
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for the same links were on the order of +25, we scaled the LSA values by a factor of 50 to be useable 

with CogTool-Explorer 1.0. 

The model’s local decision to stop and select the best link so far or continue to look at another link 

is not fixed, but is dependent on the infoscent of the links that have been evaluated so far, and 

moderated by parameters  and k.  is the variance of the ACT-R noise function that is applied to the 

infoscent value each time a link is evaluated, to reflect the variability a user might display when 

accessing infoscent. k (see Eq. 2) affects how rapidly the decision to stop switches as a function of 

the infoscent values encountered, to reflect a user’s “readiness” to stop and select the best link. Fu 

and Pirolli (2007) explained: 

In the equation specified in the text, we set a = 1 for the read-next-link production; 

and a = 1 + k for the click-link production. By setting the value of a for click-link to a 

higher value, we assume that in general, following a link is more likely to lead to the 

target page than attending to the next link on the same Web page. k is a free 

parameter that we used to fit the data. (p. 408) 

The choice of k may be partly influenced by the layout of links on the page. For example, on a query 

search results webpage, k would be smaller to reflect a higher readiness to stop since the most 

related links appear near the top of the webpage. If the layout of links is not organized, k would be 

larger to reflect a lower readiness to stop since the correct link might be anywhere on the webpage. 

Figure 10: An example run of CogTool-Explorer 1.0 in the two-column layout. 
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With the scaling factor of 50, we were able to use ACT-R’s default noise parameter value of  =1.0, 

as did Fu and Pirolli (2007). As is common practice when developing new models and tools, for 

example Fu and Pirolli (2007), and Halverson and Hornof (2006, 2007), we set the model’s k 

parameter to best fit the human data. Fu and Pirolli fit their data and k was determined to be 5; the 

best fit to our data gives a k of 600. We believe this difference reflects the fact that Fu and Pirolli 

modeled search through organized webpages while our webpages present a collection of randomly 

organized links, therefore our model, like the participants, are more likely to keep searching on the 

webpage than stop and select the best link so far. With this setup, CogTool-Explorer 1.0 successfully 

performed the 22 tasks the same number of times as did the participants, producing predictions of 

mean clicks on webpage and percent first click success (Section 3.1 gives the definitions of these two 

performance measures). 

Figure 11 shows the results by participants, CogTool-Explorer 1.0 and AutoCWW predictions on the 

22 tasks in the two-column layout. A two-way ANOVA for mean clicks on webpage found that it was 

significantly easier to find the correct link in the left column as opposed to the right column (F (1, 

60) = 8.83, p < 0.01), that there was a significant difference between participants and models (F (2, 

60) = 89.3, p < 0.001), and no significant interaction (F (2, 60) = 1.65, p = 0.20). Post-hoc tests 

revealed that the participant-model effect is due to the differences between AutoCWW predictions 

and participant performance, and not due to CogTool-Explorer 1.0 predictions. Although the 

magnitudes of CogTool-Explorer 1.0 predictions were larger than participant performance, these 

differences between CogTool-Explorer 1.0 and participants were not significant when the correct 

links were in the left column (F (1, 60) = 1.47, p = 0.23) or in the right column (F (1, 60) = 3.59, p = 

0.06). Importantly, CogTool-Explorer 1.0 captured the effect of target column observed in 

participants and took significantly less clicks when the correct links were in the left column than in 

the right column (F (1, 60) = 8.33, p < 0.01). In contrast, AutoCWW predicted far more clicks on the 

webpages than participant performance when the correct links were in the left column (F (1, 60) = 

113.74, p < 0.001) or in the right column (F (1, 60) = 55.05, p < 0.001). AutoCWW also did not 

capture the effect of target column and did not predict any significant difference between 

exploration tasks with the correct link in the left or right column (F (1, 60) = 0.12, p = 0.73). 

Figure 11: Mean clicks on webpage by target column, 
comparing participants’ performance to predictions by 
CogTool-Explorer 1.0 and AutoCWW (Standard Error shown) 



 

 

37  

37 

In Figure 12, two-way ANOVA for percent first click success found similar results: performance was 

significantly better when the correct link was in the left column than in the right column (F (1, 40) = 

17.0, p < 0.001), the participants performed better than the model (F (1, 40) = 5.45, p < 0.05), and 

there was no significant interaction (F (1, 40) = 0.03, p = 0.87). Although CogTool-Explorer 1.0 

predictions were less successful than participant performance, post-hoc tests reduced the 

significance of the differences between CogTool-Explorer 1.0 and participants when examined 

separately for each column (F (1, 40) = 2.88, p = 0.10 for the left column; F (1, 40) = 2.64, p = 0.11 

for the right column). However, CogTool-Explorer 1.0 reliably captured the effect of target column 

observed in participants and had significantly higher percent first click success when the correct 

links were in the left column than in the right column (F (1, 40) = 9.21, p < 0.01). In contrast, 

AutoCWW does not predict percent first click success because its regression formula for mean 

clicks on webpage produces a minimum of 2.29 clicks per webpage; it is not derived to make 

meaningful first click success predictions. 

These comparisons in Figures 11 and 12 show that CogTool-Explorer 1.0 predictions aligned with 

participant data. By accurately preserving the layout positions of links in its device model, using a 

serial evaluation process that will adaptively stop and select the best link so far, and a visual search 

strategy, CogTool-Explorer 1.0 has the necessary set of components to replicate participant 

behavior in the two-column layout. The device model captures enough information about the layout 

to enable the user model to consider layout position in its prediction. The user model, by simulating 

interaction one link at a time, effectively replicates the phenomenon that some links are looked at 

and evaluated before other links. If the model exhaustively evaluates every link, any visual search 

strategy and any layout position becomes inconsequential because the model will look at and 

evaluate all links on a webpage before making a selection. However, because the model does 

adaptively stop and select the best link so far, both the visual search strategy and the layout 

positions must be correct, or the wrong choices will be made. Therefore, replicating participant 

behavior and making more accurate predictions require all three components and CogTool-

Explorer 1.0 uses them all successfully. 

Figure 12: Percent first click success by target column, 
comparing participants’ performance to predictions by 
CogTool-Explorer 1.0 (Standard error shown) 
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4.2 CONSIDERATION OF GROUPING 
Section 4.1 describes the modeling work in CogTool-Explorer 1.0 to address the first research gap 

identified in Section 3.1: consideration of layout position. This section will describe the modeling 

work in CogTool-Explorer 1.1 and CogTool-Explorer 1.2, to address the second research gap 

identified in Section 3.2:  consideration of grouping. 

Miller and Remington (2004) noted that “a common approach for grouping links on a webpage 

involves lifting a lower level of links and placing them under each corresponding link at the upper 

level. In this way, two levels of the structure appear on one webpage” (p. 261). Figure 13 illustrates 

this with an example. Miller and Remington (2004) and Kitajima and Polson (personal 

communication, October 2008) suggested that users may navigate this within-webpage structure of 

“flatten” webpages similar to a two-level structure across multiple webpages, that is, on visiting a 

webpage with links laid out in groups, users will first evaluate the groups in the webpage, focus 

attention on a group and evaluate the links in that group. If the user decides to go back from a 

group, he or she will reevaluate the groups in the webpage, focus attention on another group and 

then evaluate the links in the new group. 

Figure 14c shows an example of a webpage layout with multiple groups, which was used in the 

AutoCWW experiments (Blackmon et al., 2005; Toldy, 2009). The goal in this dissertation research 

is for CogTool-Explorer to match human performance on a layout with multiple groups like in 

Figure 14c. Following Miller and Remington (2004) and Kitajima and Polson (personal 

communication, October 2008), the approach in this dissertation research is to progressively test 

and modify CogTool-Explorer over three webpage layouts, starting with the Multi-Page layout 

(Figure 14a) where each link in the top-level page (also referred to as a top-level link) leads to its 

corresponding 2nd-level page of links, followed by the Half-flatten layout (Figure 14b) where 

Figure 13: An example of flattening two levels of webpages (left) into a single webpage 
(right) by grouping the links from each 2nd-level webpage onto a single webpage. These 
webpage examples are from AutoCWW experiments in Blackmon et al. (2005) and Toldy 
(2009). 
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selecting a top-level link reveals the 2nd-level links grouped under that top-level link, and ending 

with the Multi-Group layout (Figure 14c) where the 2nd-level links are grouped in nine groups. 

These three layouts were based on an actual encyclopedia website6 (Figure 15). 

To test CogTool-Explorer, CogTool-Explorer’s task performance will be compared to human data 

collected from participants who performed tasks on these three layouts in the AutoCWW 

experiments. The participant log files were generously provided by Dr. Marilyn Blackmon. The log 

files record each participant’s sequence of link clicks and page visits. 

Section 4.2.1 describes the research work done to test and modify CogTool-Explorer 1.0 in the 

multi-page layout, which led to CogTool-Explorer 1.1. Section 4.2.2 describes the research work 

done to test and modify CogTool-Explorer 1.1 in the half-flatten layout, which led to CogTool-

Explorer 1.2. Section 4.2.3 describes the research work done to test CogTool-Explorer 1.2 in the 

multi-group layout. Section 4.2.4 compares these CogTool-Explorer models to AutoCWW’s 

predictions in each of these three layouts. Finally, Section 4.2.5 summarizes the results and 

findings. 

                                                             
6 http://encarta.msn.com (discontinued on October 31, 2009) 

(a)    (b)     (c) 
 
Figure 14: (a) The multi-page layout where each link in the top-level webpage (also 
referred to as a top-level link) led to its corresponding 2nd-level webpage of links, (b) 
the half-flatten layout where selecting a top-level link reveals the 2nd-level links grouped 
under that top-level link, and (c) the multi-group layout where the 2nd-level links are 
grouped into nine groups. 



 
40 

 

Figure 15: The Microsoft Encarta Website 
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4.2.1 MULTI-PAGE LAYOUT  
The multi-page layout and tasks in this dissertation are from AutoCWW experiment Expt041022 

(Experiment 1 in Toldy, 2009). In this layout (Figure 16), the task goal is presented in the 

paragraph of text under the line “Find encyclopedia article about…” at the top of the top-level and 

2nd-level pages. Participants start in the top-level page and on selecting a link, transits to 2nd-level 

pages. In a 2nd-level page, participants may choose to go back to the top-level page, or select a link 

to go to its 3rd-level page. In a 3rd-level page, participants can check that they had succeeded in the 

task if the target link (for example “Dialect” in Figure 16) is in that 3rd-level page, otherwise, 

participants will go back to the 2nd-level page and continue exploration. Each task has only one 

correct 3rd-level page that contains the target link, and only one correct top-level link and only one 

correct 2nd-level link that lead to the correct 3rd-level page. 

The multi-page layout in effect enforces a group-based hierarchical exploration process; both 

participants and CogTool-Explorer 1.0 have to select a “group” on the top-level page to see the links 

of that group in its 2nd-level page, and to select another group, both participants and CogTool-

Explorer 1.0 have to go from a 2nd-level page back to the top-level page. In the multi-page layout, 

these group selection and go-back actions result in transitions across pages and are thus observable 

and recorded in the participant log files. Whereas in the half-flatten and multi-group layouts 

(Sections 4.2.2.2 and 4.2.3.1 respectively), most group selection and go-back actions are eye 

movements, thus, are not directly observable in the AutoCWW experiment setup (which had no 

eye-tracker) and thus not recorded in the participant log files. Therefore, this dissertation starts 

with the multi-page layout, which provides participant data at the necessary level of detail for 

comparison to model behavior, to motivate improvements to the model, before testing the 

improved model in the half-flatten and multi-group layouts. 

Figure 16: In the multi-page tasks, participants start on the top-level page (leftmost) and on 
selecting a link, transits to 2nd-level pages. Participants may go back to the top-level page, or 
may select a link to go to its 3rd-level page. In a 3rd-level page, participants can check if they 
have succeeded in the task, and if not, go back to the 2nd-level page and continue exploration. 
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In the multi-page layout, it is important to differentiate between going back from a 3rd level page to 

a 2nd-level page, versus going back from a 2nd-level page to the top-level page. Going back from a 3rd-

level page is deterministic because if the target link is not in the 3rd-level page, it is clearly the 

wrong path and the next action will be to go back, and that is what happened in all participant trials. 

In contrast, going back from a 2nd-level page is a deliberate choice because the decision to go back 

can be taken before all 2nd-level links in the page are exhaustively selected, which is what happened 

in the majority of participant trials. The assumption in both the SNIF-ACT 2.0 and CogTool-Explorer 

1.0 models is that the decision to go back is dependent on the infoscent of links that are looked at 

and evaluated, thus, it is this type of go-back actions, from a 2nd-level page to the top-level page, that 

is of interest in this dissertation. 

Sections 4.2.1.1 and 4.2.1.2 present the operation and initial results of CogTool-Explorer 1.0 in the 

multi-page layout. Sections 4.2.1.3 to 4.2.1.6 present a series of refinements to the model that both 

increase and decrease the fit to participant data on many metrics, and eventually arrive at CogTool-

Explorer 1.1 that improves on every metric compared to CogTool-Explorer 1.0. We reported the 

earlier parts of this series of refinements to CogTool-Explorer 1.0 (Teo and John, 2011), which is 

reproduced with more detail here. Section 4.2.1.7 summarizes the performance of CogTool-

Explorer 1.1 and its series of refinements.  

4.2.1.1 Operation of CogTool-Explorer 1.0 in the Multi-Page Layout 
Figure 17 illustrates an example run of CogTool-Explorer 1.0 in the multi-page layout. Note that 

steps 1 to 5a in Figure 17 follows how CogTool-Explorer 1.0 operates in the two-column layout as 

presented in Figure 10 and Sections 4.1.1 to 4.1.4, thus this section will present steps 1 to 5a briefly.  

What is new in Figure 17 starts from step 5b where the model transits to a 2nd-level page that is 

Figure 17: An example run of CogTool-Explorer 1.0 in the multi-page layout. 
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absent in the two-column layout. 

Given the description of the task goal, CogTool-Explorer 1.0’s point of visual attention starts in the 

top-left corner of the page (step 1), looks at the next nearest link (step 2a.), evaluates the link’s 

infoscent with respect to the goal (step 2b) and remembers the link as the best link if it has the 

highest infoscent so far in the page. Base on the evaluated infoscent of the link, the model will then 

decide to either look at and evaluate another link (step 2c), or it may decide to stop and select the 

best link seen so far (step 3). When the model decides to select the best link seen so far in the page, 

it will look back at the best link, move a simulated mouse pointer over the link and click on it (step 

4). The click causes the current page in the model’s visual field to be replaced with the new page, 

and the model maintains its point of visual attention across page transitions (step 5a) 

In the 2nd-level page, CogTool-Explorer 1.0 will proceed like it did on the previous top-level page: it 

will look at the nearest link (step 5b), evaluate the link’s infoscent (step 5c) and remember the link 

as the best link if it has the highest infoscent so far in the page, and then decide to either look at and 

evaluate another link (step 5d), or stop and select the best link seen so far in the page (step 6), or it 

may decide to go back to the previous page (step 7). 

This three-way decision is represented by three competing ACT-R productions and the production 

with the highest utility will be selected. CogTool-Explorer 1.0 uses the same utility update 

equations as SNIF-ACT 2.0 (see “8: Utility equations” in Fu & Pirolli, 2007) to update the utilities 

associated with these three productions every time after a link is evaluated. The first two actions 

and their utility update equations (Eq. 1 and Eq. 2) were discussed in Section 4.1.1 in the two-

column layout. In a 2nd-level page of the multi-page layout, CogTool-Explorer 1.0 has the third 

possible action to go back to the previous page: 

UtilityGoBack =  MIS(links assessed on previous page) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent      [Eq. 3] 

 

Like in SNIF-ACT 2.0 (not mentioned in Fu and Pirolli, 2007, but extracted from a walkthrough of 

the SNIF-ACT 2.0 code), to support the computation of Eq. 3, CogTool-Explorer 1.0 uses a stack data 

structure to remember the infoscent of links assessed on previous pages for the first operand of Eq. 

3, and a list data structure to remember the infoscent of links assessed on the current page for the 

second operand of Eq. 3. After a link on the current page is evaluated, its infoscent will be added to 

the list of infoscents for the second operand of Eq. 3. All three utility update equations will then be 

computed and the production with the highest utility will be selected. When the model decides to 

select a link and transits to a new page, the list of infoscents for the current page is pushed into the 

stack and the second operand is reinitialized with an empty list. When the model decides to go back 

to the previous page, the most recent list in the stack is removed from the stack and discarded, and 

the second operand is reinitialized with an empty list. Therefore, in the multi-page layout, when 

CogTool-Explorer 1.0 selects a 2nd-level link, transits to its 3rd-level page, find that it is not correct, 

and goes back to the 2nd-level page, the first operand in Eq. 3 will revert to the list of infoscents 
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assessed on the top-level page, and the second operand in Eq. 3 will be reinitialized with an empty 

list. 

In CogTool-Explorer 1.0, the numeric parameter in Eq. 3, GoBackCost, is set to 5, the same as in 

SNIF-ACT 2.0 (Fu & Pirolli, 2007). If and when the model decides to go back, the model’s visual field 

will be replaced with the previous page, and exploration continues following step 5a on the 

previous page. 

4.2.1.2 Test of CogTool-Explorer 1.0 
To test CogTool-Explorer 1.0, comparison metrics (described in the next section) are computed 

from model runs in the multi-group layout and from participant data in the AutoCWW experiment. 

In that experiment, each participant performed 36 different tasks in the multi-page layout. Each 

task is defined by a different task goal at the top of the page. Participants had 130 seconds to 

complete each task, failing which the trial is considered a failure. There were 44 to 46 valid 

participant trials recorded for each task. 

4.2.1.2.1 Task Performance Measures and Comparison Metrics 
Four task performance measures are used to measure how participants and CogTool-Explorer 1.0 

performed in the tasks: 

 %Success: the percentage of participant trials or model runs succeeding on each task. 

%Success is common in user testing to inform UI designers about how successful their users 

would be with the UI design. 

 %ErrorFreeSuccess: the percentage of participant trials or model runs succeeding without 

error on each task. In the multi-page layout, this means completing the task in two clicks: 

selecting the correct top-level link followed by selecting the correct 2nd-level link. High 

%ErrorFreeSuccess indicates that the UI design for these tasks needs no improvement and 

therefore no further design effort. Low %ErrorFreeSuccess focuses redesign effort. 

 LinkClicks: the number of times each link was selected in participant trials or model runs 

on each task. LinkClicks indicate if model runs match participant trials on choice behavior. 

 GoBacks: the number of times participant trials or model runs went back from each 2nd-

level page on each task. Indicates if model runs match participant trials on go-back 

behavior. 

For participants, each task performance measure is calculated from participant data collected in the 

AutoCWW experiment. For the model, to get stable values for the above measures, multiple sets of 

model runs are executed until the model runs converged. To establish convergence, first, for each of 

the 36 tasks, 44 to 46 model runs are executed for that task, equal to the number of valid 

participant trials for that task, resulting in a set of model runs comprising a total of 1649 runs from 

all 36 tasks. From this set of model runs, %Success is calculated for each task. Next, an additional set 

of model runs is executed and combined with the previous set to form a new combined set. 

%Success is calculated for each task from this new combined set and compared to the previous set’s 

%Success values. If all %Success values are within 1% of each other, the model runs in the combined 
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set are considered to have converged and no more model runs are needed. If any of the tasks in the 

combined set had a %Success value greater than 1% difference from the previous set, an additional 

set of model runs will be executed, combined with the previous combined set to form a new 

combined set and the calculated %Success values compared. This process is repeated until the 

model runs in the combined set have converged. For the models CogTool-Explorer 1.0 to CogTool-

Explorer 1.1 in the multi-page layout, convergence for each model is established within 13 sets of 

model runs, that is, within a maximum of 21437 individual model runs over all 36 tasks. On a 

computer equipped with an Intel® Core™2 Duo 2.4 GHz processor and 4GB of memory, a set of 

1649 model runs, where each run may run for the equivalent of 130 seconds of experiment trial 

time, took between half an hour to one hour to complete, depending on how successful the model 

was on the tasks. 

After convergence, each measure is calculated from the final combined set of model runs. Since 

there are more model runs than participant trials for each task, LinkClicks and GoBacks by the 

model are normalized by the number of sets of model runs, so that these two measures are 

comparable to the same measures calculated from participant data. Note that %Success and 

%ErrorFreeSuccess do not need to be normalized since these two measures are percentages of the 

total number of model runs and are thus comparable to the same measures calculated from 

participant data. 

To compare how well the model matched participant data across the 36 tasks, two comparison 

metrics, Correlation (expressed in R2 value) and the Percent Average Absolute Error (%AAE, 

expressed as a percentage of the average observed value from participant data), are computed for 

each task performance measure. Correlation is a commonly used goodness-of-fit metric in the 

cognitive modeling literature, and the R2 value indicates the percentage of the variance in the 

participant data that the model can account for. A strong correlation between model and 

participant data will enable the use of model predictions to differentiate between tasks at the 

extremes, that is, which tasks are sufficiently supported by the UI design and are mostly successful 

such that further design effort can be diverted to other areas, and which tasks and UI designs are 

less successful and thus in most need of further redesign effort. %AAE is another metric 

recommended by Kieras, Wood and Meyer (1997) for comparing predictive engineering models to 

human data. To compute %AAE, the difference between the task performance measure by 

participants and by the model is calculated for each task, the absolute values of these differences 

are then averaged and expressed as a percentage of the average task performance measure 

calculated from participant data. Kieras et al. (1997) argued that “the goal of engineering models is 

to supply predicted values of usability metrics that are not merely correlated with the empirically 

measured values, but are actually similar in numerical value”, that “the best choice for a simple 

summary statistic for the accuracy of the models is the average absolute error of prediction”, and 

“that engineers often use a rule of thumb which says that predictions accurate within 10–20% are 

useful for design purposes” (p. 266). 

Prior work that have motivated this dissertation research had either reported correlation (for 

example SNIF-ACT 2.0 in Fu and Pirolli, 2007) or %AAE (for example the Minimal Model of Visual 

Search in Halverson and Hornof, 2007), thus, both metrics are reported in this dissertation. 
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4.2.1.2.2 Comparison Results 
Table 2 presents the results for CogTool-Explorer 1.0 in the multi-page layout (converged after 12 

sets of model runs). These results are disappointing and substantially lower than results reported 

by Fu and Pirolli (2007) in SNIF-ACT 2.0 for the two websites they modeled and compared to 

participant data. Their R2%Success were 0.98 and 0.94, R2%LinkClicks were 0.69 and 0.91, and 

R2%GoBacks were 0.73 and 0.80, respectively for the two websites. Fu and Pirolli did not report 

R2%ErrorFreeSuccess. 

Table 2: CogTool-Explorer 1.0 compared to participant data in the multi-page layout 

 
Correlation, R

2
 

(95% confidence interval) 
%AAE 

%Success 
0.28 

(0.21, 0.35) 
34.8% 

%ErrorFreeSuccess 
0.44 

(0.37, 0.51) 
54.2% 

LinkClicks 
0.25 

(0.24, 0.25) 
194% 

GoBacks 
0.25 

(0.23, 0.28) 
90.3% 

 

Since CogTool-Explorer 1.0 uses the same utility update equations and model parameters values 

(except for parameter k; see Section 4.1.5) as SNIF-ACT 2.0, why are their correlation results, in 

particular R2%Success, so different? A possible explanation is that different data collection 

processes are to blame. Fu and Pirolli’s (2007) data are from participants doing eight tasks on each 

of two websites, at their leisure, on their own computers. Their participants could abandon the task 

at will, whereas the participant data from the AutoCWW experiment are collected in the laboratory 

and participants had 130 seconds to complete each task. Not compelled to continue until success, 

not a single participant in Fu and Pirolli’s data succeeded on 4 of their 16 tasks, in contrast to the 

range seen in the AutoCWW experiment (average %Success = 71%, minimum %Success = 13%, 

maximum %Success = 100%). Allowing the participants to abandon tasks probably eliminated the 

most difficult tasks with their higher variability. 

What about R2LinkClicks and R2GoBacks, where the results reported for SNIF-ACT 2.0 are also 

substantially higher than the results by CogTool-Explorer 1.0? A possible explanation is that 

different model-data comparison paradigms are to blame. In SNIF-ACT 2.0, these two metrics are 

reported from models that were run under the model-tracing paradigm, Fu and Pirolli explained: 

To test the predictions of the SNIF-ACT 2.0 model on its selection of links, we first started 

SNIF-ACT 2.0 on the same pages as the participants in all tasks. The SNIF-ACT 2.0 model 

was then run the same number of times as the number of participants in each task, and the 

selections of links were recorded. After the recordings, in case SNIF-ACT 2.0 did not pick the 

same Web page as participants did, we forced the model to follow the same paths as 

participants. This model-tracing process was a common method for comparing model 

predictions to human performance (e.g., see Anderson, Corbett, Koedinger, & Pelletier, 
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1995, for a review). It also allows us to directly align the model simulation results with the 

participant data. (p. 383) 

In the model-tracing paradigm, model errors (actions that differed from what participants did) do 

not accumulate. When the model makes an error, the error will count against the model only once, 

and the model will be reset to the choice actually made in the participant trial, setting the model 

back on the same path as the participant trial. In contrast, for free-running model runs, where no 

realignment of model actions to participant data is performed, model errors do accumulate. 

Therefore, it is more difficult for a free-running model to match participant data because an error 

(for example a link selection on the top-level page) will take the model down a different path from 

the participant trial and the model may never recover and return to the path in the participant trial.  

Fu and Pirroli (2007) noted that compared to results from free-running models, results from 

model-tracing “may not truly reflect the general capabilities of the model in predicting user–Web 

interactions.” (p. 388). Furthermore, when HCI practitioners want a priori predictions of likely user 

exploration from a modeling tool, the predictive model has to run as a free-running model because 

analysis is needed before there is human data. For these reasons, results of model-data 

comparisons for all CogTool-Explorer models has always been from free-running model runs, thus, 

the lower R2%LinkClick and R2%GoBacks results by CogTool-Explorer compared to SNIF-ACT 2.0 

could be due to the use of free-running models rather than the model-tracing paradigm7. 

The next 22 pages of this dissertation present a detailed explanation of the many refinements made 

to CogTool-Explorer 1.0 to emerge with CogTool-Explorer 1.1, which improved the fit of the model 

to participant data, both qualitatively and quantitatively. Some of these refinements improved fit 

immediately whereas others required the accumulation of several refinements to improve the fit. 

Readers may choose to skip to Section 4.2.1.7 for the performance of CogTool-Explorer 1.1 and its 

path of refinement (Figure 28). 

With an understanding of the effect that free-running models have on the poor initial results of 

CogTool-Explorer 1.0 in the multi-page layout, the next step is to inspect at a more detailed level 

what might have led to the model’s poor performance and what can be done to improve the match 

between model behavior and participant data. Figure 18 presents the scatter plots of CogTool-

Explorer 1.0 compared to participant data in the multi-page layout. 

                                                             
7 R2%Success results reported by SNIF-ACT 2.0 are from free-running model runs. 
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(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 18: CogTool-Explorer 1.0 compared to participant data in the multi-page layout. Each 

data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level page in 

a task. If model behavior perfectly matched participant data, all data points will lie on the 

green diagonal line. The red line is the best fitting line for the data points. 

Two patterns of mismatch can be seen in the scatter plots of Figure 18. First, there are many tasks 

where participants were more successful than the model, as indicated by data points above the 

diagonal in Figure 18a, and to a lesser extent in Figure 18b. This suggests that on these tasks, where 

participants tended to select the correct top-level  and 2nd-level links, the model did not. The second 

pattern of mismatch is evident from the blank area in the right side of Figure 18c, framed by a 

vertical “wall” projecting from about 45 on the horizontal axis. While there were links that 

participants selected more times than the number of participant trials (44 to 46 trials depending on 

the task), indicating that participants reselected links within a single trial, the model never selected 

a link more times than the number of model runs, thus, the model never reselected a link within a 

single run and so no data points appear beyond 46 on the horizontal axis. Sections 4.2.1.3 and 

4.2.1.4 will address these two issues in turn. 

4.2.1.3 Refinement of Infoscent Estimate for Top-Level Links 
Figures 18a and 18b show that participants were more successful than CogTool-Explorer 1.0, thus, 

a good place to start is by examining the tasks where participants were most successful. 

Furthermore, on tasks where participants were most successful, that is, on tasks with the 

R
2
 = 0.28 

%AAE = 34.8% 

R
2
 = 0.44 

%AAE = 54.2% 

R2 = 0.25 

%AAE = 90.3% 

R2 = 0.25 

%AAE = 194% 
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highest %ErrorFreeSuccess, participants were least likely to be exploring in a random fashion, so a 

systematic model is more likely to explain the behavior. Of the tasks with the 

highest %ErrorFreeSuccess by participants, the topmost task is to search for information about 

“Fern”. The correct top-level link is “Life Sciences” and the correct 2nd-level link is “Plants”. The 46 

participants only selected other top-level links 8% of the time, but went back from those incorrect 

2nd-level pages to select “Life Science” and then “Plants” (in all but 2 cases) to complete the task. In 

contrast, CogTool-Explorer 1.0 selected other top-level links 70% of the time before selecting “Life 

Sciences”, and on some model runs it never selected “Life Sciences” and failed the task. 

One possible explanation for the model behavior is that it did not look at “Life Science” before 

deciding to select a link in the top-level page. When the details of the model runs were examined, 

this was not the case, as the model runs did see “Life Science” before selecting a link in over 95% of 

first-visits to the top-level page. A second possible explanation is that the model looked at too many 

links and saw other higher infoscent links before selecting a link in the top-level page. This also was 

not the case because in all model runs up to the point where it finished looking at “Life Science”, if 

the model was forced to choose the best link so far, it would have selected “Life Science” in over 

60% of the model runs. A third possible explanation lies in the infoscent values used by the model. 

Given a particular task goal, CogTool-Explorer 1.0 uses LSA to compute an infoscent value for each 

link, based on the cosine value between two vectors, one representing the words in the task goal 

and the other the words in the link text, which is the same method used by AutoCWW (Blackmon, et 

al., 2005). To approximate how a reader elaborates and comprehends the link text in relation to his 

or her background knowledge, AutoCWW identifies all the words in the selected LSA corpus that 

occur at least 50 times in the corpus and have a minimum cosine of 0.5 with the link text vector, and 

appends these words to the link text as an elaboration, before using LSA to compute the infoscent of 

the link. Kitajima et al. (2005) explained that “elaborated link labels generally produce more 

accurate estimates of semantic similarity (LSA cosine values).” CogTool-Explorer 1.0 used this same 

elaboration method, thus, for the link “Life Science”, the words “science sciences biology scientific 

geology physics life biologist physicists” are appended to compute the link’s infoscent value. 

In a multi-group layout (Figure 14c), where links are grouped into regions labeled with a heading, 

AutoCWW uses a further elaboration method. Kitajima et al. (2005) explained that “readers scan 

headings and subheadings to grasp the top-level organization or general structure of the text”. To 

represent a region, AutoCWW first elaborates (as described in the previous paragraph) the heading 

text and the link text of each link of that region, and then appends the elaborated link texts to the 

elaborated heading text to form a text string from which to compute the region’s infoscent. 

CogTool-Explorer 1.0 did not use this elaboration method for top-level links in the multi-page 

layout because their subordinate links appeared on 2nd-level pages, different from Kitajima et al.’s 

assumption. However, participants did practice trials on this same multi-page layout as the actual 

test trials, and performed all 36 test trials on this same multi-page layout. Therefore, it is a 

reasonable assumption that the information gained from this experience would influence how 

participants assessed the infoscent of a top-level link. This reasoning motivated the refinement in 

CogTool-Explorer 1.0a to better represent these participants: for the infoscent of a top-level link, 

the top-level link will be elaborated (as described in the previous paragraph) and then appended 
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with the link texts from its associated 2nd-level links. While this refinement is similar to AutoCWW’s 

procedure, the justifications are different. 

Table 3 presents the results for CogTool-Explorer 1.0a in the multi-page layout (converged after 12 

sets of model runs). CogTool-Explorer 1.0a improved over CogTool-Explorer 1.0 on all eight 

metrics; R2%Success more than doubled and R2%ErrorFreeSuccess almost doubled. Figure 19 shows 

the scatter plots of CogTool-Explorer 1.0a compared to participant data. Comparing Figures 19a to 

18a on %Successes, there is a movement of those data points above the diagonal (tasks on which 

participants were successful) towards the right (CogTool-Explorer 1.0a have became as successful). 

This improvement can also been seen in %ErrorFreeSuccesses by comparing Figures 19b to 18b. 

There appear to be at least two outlier tasks, one in the lower right quadrant of Figure 19a and the 

other in the upper left quadrant in Figure 19b. As data points move over the course of further 

model refinements through Sections 4.2.1.4 to 4.2.1.6.2, outlier tasks that remain will be discussed 

in Section 4.2.1.6.2 in the test of CogTool-Explorer 1.1. 

Table 3: CogTool-Explorer 1.0 and 1.0a compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0 

CogTool-
Explorer 

1.0a 

CogTool-
Explorer 

1.0 

CogTool-
Explorer 

1.0a 

%Success 
0.28 

(0.21, 0.35) 
0.58 

(0.52, 0.64) 
34.8% 23.6% 

%ErrorFreeSuccess 
0.44 

(0.37, 0.51) 
0.83 

(0.79, 0.85) 
54.2% 41.6% 

LinkClicks 
0.25 

(0.24, 0.25) 
0.41 

(0.40, 0.41) 
194% 134% 

GoBacks 
0.25 

(0.23, 0.28) 
0.43 

(0.40, 0.45) 
90.3% 75.4% 
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(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 19: CogTool-Explorer 1.0a compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

An argument against the refinement introduced in CogTool-Explorer 1.0a is that it makes 2nd-level 

links influence the infoscent of a top-level link before the model visits the 2nd-level page. It is like 

helping the model to select the correct top-level link by “peeking” at where the correct 2nd-level link 

is located. However, this refinement can also hurt the model. For example, one of the tasks is to find 

the page for the task goal “Dance of Death”, where participants’ %Success was 63%, but this 

refinement increases the infoscent of competing top-level links, and %Success by CogTool-Explorer 

1.0 dropped from 61% to 34% in CogTool-Explorer 1.0a. 

A more general argument for introducing this refinement in CogTool-Explorer 1.0a and to bring this 

refinement forward as we continue to improve CogTool-Explorer is that this refinement has a 

similar effect as Budiu and Pirolli’s (2007) use of category-based scent in DOI-ACT as described in 

Section 2.3.6. Budiu and Pirolli argued that “a more appropriate measure for information organized 

taxonomically is degree of category membership: how much the target is a member of the class 

denoted by the label”. In DOI-ACT, Budiu and Pirolli had “self-selected participants rated, on a scale 

from 1 to 5, how likely it is for a node (e.g., banana) to be member of a class (e.g., fruits), and these 

category ratings were used by DOI-ACT to guide its selections during exploration”. In the multi-

R2 = 0.58 

%AAE = 23.6% 

R2 = 0.83 

%AAE = 41.6% 

R2 = 0.41 

%AAE = 134% 

R2 = 0.43 

%AAE = 75.4% 
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page layout, the top-level and 2nd-level pages are organized taxonomically, thus, this refinement in 

CogTool-Explorer 1.0a has a similar effect of adding category cues to the top-level links, to improve 

the quality of infoscent estimates for these links. In future work, using online sources of taxonomic 

information, such as WordNet (Miller, Beackwith, Fellbaum, Gross, & Miller, 1990), instead of the 

specially-collected human categorizations in DOI-ACT, may be an interesting addition, but in this 

dissertation we will continue with this refinement in CogTool-Explorer 1.0a.  

While this refinement in CogTool-Explorer 1.0a resulted in improvements, the second pattern of 

mismatch described in Section 4.2.1.2 remained, where participants did reselect links within a 

single trial but the model never did, which is evident from the blank area on the right side of the 

vertical “wall” in Figures 18c and 19c. The next section will address this mismatch. 

4.2.1.4 Addition of Reselection Behavior 
Participant data reveal that about 13% of all link selections by participants were reselections of 

links that they had previously selected in that same trial, but CogTool-Explorer 1.0a never 

reselected previously selected links. This model behavior is shared with both CogTool-Explorer 1.0 

and SNIF-ACT 2.0. When these models select a link, the ACT-R visual object that represents the link 

will be marked as having been selected, and that visual object will be added to the ACT-R 

declarative memory, so that the model can retrieve it from declarative memory perfectly, check that 

the link is marked as selected and will not select it again (not reported in Fu and Pirolli, 2007, but 

extracted from a walkthrough of the SNIF-ACT 2.0 code). Presumably, since Fu and Pirolli’s data 

come from tasks performed by participants in naturalistic settings using web browsers on their 

own personal computers, the link color changed when a link had been previously selected and thus 

this “perfect memory” was “in the world”. This mechanism remained unchanged in CogTool-

Explorer 1.0 and 1.0a. 

However, participants did reselect links that they had previously selected in that same trial. This 

means that the mechanism in CogTool-Explorer 1.0a that perfectly remembered which links had 

been clicked on and never reselect them must be changed to allow the possibility of matching 

participant behavior. It is not possible to tell from the participant data whether a reselection was a 

deliberate decision to select the link a second time or that the participant forgot that link had been 

previously selected (in the AutoCWW experiment where the participant data was collected, the web 

browser was set up to not change the color of links when links were selected); in the absence of 

empirical evidence, I decided to model the latter in CogTool-Explorer 1.0b using ACT-R’s activation 

decay mechanism as explained in the next paragraph. 

Each link is represented as a visual object (an ACT-R chunk) that has a status attribute (an ACT-R 

chunk slot) whose value is set to chosen when the link is selected by the model and then stored in 

declarative memory. Instead of being able to retrieve this piece of information perfectly like in 

CogTool-Explorer 1.0a, CogTool-Explorer 1.0b utilizes ACT-R’s chunk activation decay mechanism 

to govern whether the fact that the link has been previously selected will be successfully retrieved 

from declarative memory when this link is next looked at and evaluated by the model. Four ACT-R 

parameters govern this decay mechanism. Three of these parameters, base-level learning (:bll), 

permanent noise (:pas) and instantaneous noise (:ans), have recommended or commonly used 

values (:bll = 0.5, :pas = nil and :ans = 1) and are set to these values in CogTool-Explorer 1.0b. The 
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fourth parameter, activation retrieval threshold (:rt), determines if the model makes a retrieval 

request and there is a matching chunk, that is, the link was previously selected, that chunk will only 

be retrieved if it’s activation exceeds the retrieval threshold. In CogTool-Explorer 1.0b, :rt is set to    

-2 to approximate a 50% chance of reselection midway through the 130s task duration in the 

experiment. 

Table 4 presents the results for CogTool-Explorer 1.0b in the multi-page layout (converged after 8 

sets of model runs). Compared to CogTool-Explorer 1.0a, CogTool-Explorer 1.0b improves on the 

match to participant data in %Success, and is comparatively unchanged in %ErrorFreeSuccess. 

However, CogTool-Explorer 1.0b has a poorer match to participant data on LinkClicks and GoBacks 

compared to CogTool-Explorer 1.0a. 

Table 4: CogTool-Explorer 1.0a and 1.0b compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0a 

CogTool-
Explorer 

1.0b 

CogTool-
Explorer 

1.0a 

CogTool-
Explorer 

1.0b 

%Success 
0.58 

(0.52, 0.64) 
0.74 

(0.68, 0.78) 
23.6% 23.0% 

%ErrorFreeSuccess 
0.83 

(0.79, 0.85) 
0.81 

(0.77, 0.85) 
41.6% 42.3% 

LinkClicks 
0.41 

(0.40, 0.41) 
0.36 

(0.35, 0.37) 
134% 150% 

GoBacks 
0.43 

(0.40, 0.45) 
0.25 

(0.22, 0.28) 
75.4% 91.4% 

 

Comparing Figures 20c to 19c, enabling reselection of previously selected links in CogTool-Explorer 

1.0b has the desired effect: in Figure 20c, some links that were reselected by participants (data 

points with y-coordinates greater than 46) were also reselected by CogTool-Explorer 1.0b (data 

points with x-coordinates greater than 46). This is a marked difference compared to the blank area 

on the right side of the vertical “wall” in  Figures 19c and 18c. 
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(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 20: CogTool-Explorer 1.0b compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

However, the preponderance of data points to the right of the green diagonal in Figure 20c 

indicates that CogTool-Explorer 1.0b was overly aggressive in reselecting some links. To investigate 

this further, the 36 tasks are sorted by decreasing %Success by participants and grouped into 4 

quartiles of 9 tasks each. Table 5 breaks down the LinkClicks metric by these 4 quartiles and Figure 

21 shows the corresponding scatter plots for LinkClicks in these 4 quartiles (Figure 21 breakouts 

from Figure 20c by these 4 quartiles). 
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Table 5: The 36 tasks in the multi-page layout sorted by decreasing %Success by 

participants and grouped into 4 quartiles of 9 tasks each. Table also shows the breakdown of 

%Success and LinkClicks by CogTool-Explorer 1.0b in these 4 quartiles. 

 
Quartile of tasks 

(sorted by descending %Success by participants) 
 1

st
 2

nd
 3

rd
 4

th
 

%Success 
Mean 

(Max, Min)  

Participants 
99.5% 

(100%, 97.8%) 
93.0% 

(95.7%, 87.0%) 
63.8% 

(71.7, 54.4%) 
30.2% 

(52.2%, 13.2%) 

CogTool-
Explorer 1.0b 

98.6% 
(100%, 93.3%) 

92.9% 
(99.7%, 75.8%) 

38.3% 
(97.6%, 1.9%) 

13.2% 
(73.6%, 0.3%) 

LinkClicks 
by CogTool-

Explorer 1.0b 

Correlation, R
2
 

(95% confidence 
interval) 

0.70 
(0.69, 0.71) 

0.68 
(0.68, 0.70) 

0.28 
(0.26, 0.29) 

0.30 
(0.28, 0.32) 

%AAE 75.2% 86.7% 197% 155% 

 
 
 

  
(a) 1st Quartile (b) 2nd Quartile 

  
(c) 3rd Quartile (d) 4th Quartile 

Figure 21: LinkClicks by CogTool-Explorer 1.0b compared to participant data, broken down 

by the four quartiles shown in Table 5. Each data point represents a link in a task. If model 

behavior perfectly matched participant data, all data points will lie on the green diagonal 

line. The red line is the best fitting line for the data points. 
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For the tasks in the 1st and 2nd quartiles, participants were very successful, averaging 99.5% and 

93.0% success respectively (first row of Table 5), and CogTool-Explorer 1.0b was also almost as 

successful, averaging 98.6% and 92.9% success respectively (second row of Table 5). For these two 

quartiles of tasks, CogTool-Explorer 1.0b matched participants on LinkClicks well, achieving 

R2LinkClicks of 0.70 and 0.68 respectively (third row of Table 5), which are higher than the 

R2LinkClicks of 0.36 when computed from all 36 tasks (third row of Table 4), and are comparable to 

the R2LinkClicks of 0.69 and 0.91 reported for SNIF-ACT 2.0 on two websites modeled by Fu and 

Pirolli (2007). As discussed in Section 4.2.1.2.2, R2LinkClicks reported for SNIF-ACT 2.0 are from 

model-tracing runs, whereas the R2LinkClicks by CogTool-Explorer 1.0b are from free-running 

models, which make it more difficult for CogTool-Explorer 1.0b to match participant data. 

For the tasks in the 3rd and 4th quartiles, participants were less successful, averaging 63.8% and 

30.2% success respectively (first row of Table 5), and CogTool-Explorer 1.0b was even less 

successful, averaging 38.3% and 13.2% success respectively (second row of Table 5). The lower 

%Success by CogTool-Explorer 1.0b compared to participants meant that there were substantially 

more model runs than participant trials that continued to select links until the task time of 130 

seconds was up. This would explain why in contrast to the 1st and 2nd quartiles of tasks (Figures 21a 

and 21b), there were more link selections and reselections by CogTool-Explorer 1.0b compared to 

participants in the 3rd and 4th quartiles, as evident from the preponderance of data points to the 

right of the diagonal in Figures 21c and 21d. As a free-running model, CogTool-Explorer 1.0b could 

make more link selections than participants did, whereas in the model-tracing approach used by 

SNIF-ACT 2.0, the model would make exactly the same number of link selections as participants did. 

When all 36 tasks from all four quartiles are put together in Figure 20c, the free-running model 

runs in tasks where CogTool-Explorer 1.0b was less successful than participants could account for 

the overly aggressive selection and reselection of links by the model. We will return to this issue 

again in Section 4.2.1.6. 

In summary, this refinement in CogTool-Explorer 1.0b has the expected effect on model behavior, 

and resulted in an improvement in %Success and maintained %ErrorFreeSuccess. While the 

refinement resulted in worse results for LinkClicks, the detailed breakdown and analysis in the 

preceding two paragraphs could provide an account for it. This refinement also resulted in worse 

results for GoBacks; the next section will investigate the model’s go-back behavior. 

4.2.1.5 Refinement of GoBack Behavior 
On visiting a 2nd-level page in the multi-page layout, participants would take one of two possible 

actions: select a link or go back to the top-level page. Participant data revealed that 26% of 

participant actions in 2nd-level pages were go-backs, but only 6% of CogTool-Explorer 1.0b actions 

in 2nd-level pages were go-backs. Interestingly, in the tasks Fu and Pirolli’s (2007) used for SNIF-

ACT 2.0, 5% of their participant actions were go-backs. This difference in the percentage of go-back 

actions by participants (26% in the multi-page tasks versus 5% in the SNIF-ACT 2.0 tasks) may be 

because of the different data collection processes used. As explained in Section 4.2.1.2.2, participant 

data for the multi-page tasks were collected in a laboratory setting and participants had 130 

seconds to complete each task. In contrast, participants in Fu and Pirolli’s (2007) data performed 

their tasks at their leisure, on their own computers, and could abandon tasks at will. Allowing the 
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participants to abandon tasks instead of going to completion probably shortened or even 

eliminated the most difficult tasks where participants would likely have to make more go-back 

actions to succeed in the task. 

As explained in Section 4.2.1.1, on visiting a 2nd-level page, after looking at and assessing the 

infoscent of a link, CogTool-Explorer 1.0b will choose between reading another link, selecting the 

best link seen so far, or going back to the previous page. This three-way decision is represented by 

three competing ACT-R productions and the production with the highest utility will be selected. 

CogTool-Explorer 1.0b uses the same utility update equations as SNIF-ACT 2.0 (see 8: Utility 

equations in Fu & Pirolli, 2007) to update the utilities associated with the above three actions each 

time after a link is evaluated. The utility update equations for reading another link and selecting the 

best link so far have both strong theoretical support (Fu & Pirolli, 2007) and empirical support 

from several studies that did not emphasize or use go-back behavior (Fu & Pirolli, 2007, and Teo & 

John, 2008). Compared to those two utility update equations, the utility update equation for going 

back has relatively less theoretical and empirical support: 

UtilityGoBack =  MIS(links assessed on previous page) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent      [Eq. 3] 

 

CogTool-Explorer 1.0b uses this same utility update equation (Eq. 3) and the same GoBackCost 

parameter value of 5 as SNIF-ACT 2.0 to govern when the model chooses to go back to the previous 

page. This may be a reason why CogTool-Explorer 1.0b had 6% of go-back actions, which is 

comparable to the 5% of go-back actions that Fu and Pirolli’s (2007) participants did in their tasks. 

However, this is substantially less than the 26% of go-back actions by participants in the multi-page 

tasks, thus, it calls into question the utility equation and the GoBackCost parameter that govern 

CogTool-Explorer 1.0b’s go-back behavior. 

The only description Fu and Pirolli (2007) gave for GoBackCost was “the cost of going back to the 

previous page” (p. 381), and in SNIF-ACT 2.0, its value was set to 5, presumably providing a good fit 

to their data. Table 6 shows how the percentage of go-back actions from 2nd-level pages by CogTool-

Explorer 1.0b changed as a function of the GoBackCost parameter. At the GoBackCost value of 1, the 

percentage of go-back actions by the model increased to 24%, almost on par with the 26% by 

participants. A GoBackCost parameter value of zero does not make sense because the parameter 

represents the cost of navigating to the previous page on a web browser versus remaining on the 

current page, and there is at least some cost in time and effort to perform that navigation. Thus, 

CogTool-Explorer 1.0c uses the GoBackCost parameter value of 1. 
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Table 6: Percentage of go-back actions from 2nd-level pages by CogTool-Explorer 1.0b as a 

function of the GoBackCost parameter, compared to participants. CogTool-Explorer 1.0c uses 

the GoBackCost parameter value of 1. 

 
CogTool-
Explorer 

1.0b 
 

CogTool-
Explorer 

1.0c 
Participants 

GoBackCost 5 4 3 2 1 

Percentage of 
go-back actions 

6% 7% 9% 14% 24% 26% 

 

Table 7 presents the results for CogTool-Explorer 1.0c in the multi-page layout (converged after 12 

sets of model runs). While the reduction in the GoBackCost parameter value to 1 brought the 

percentage of go-back actions by the model to almost on par with that by participants (Table 6), it 

resulted in worse results for almost all the metrics in Table 7, except for an increase in R2GoBacks. 

Of the correlation metrics, R2%Success by CogTool-Explorer 1.0c is reduced to a third of that by 

CogTool-Explorer 1.0b. Comparing Figures 22a to 20a, and 22b to 20b, there is a reappearance of 

tasks where participants were more successful than the model, as indicated by the data points 

above the diagonal in Figures 22a and 22b, reminiscent of Figures 18a and 18b. The next section 

will examine these tasks. 

Table 7: CogTool-Explorer 1.0b and 1.0c compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0b 

CogTool-
Explorer 

1.0c 

CogTool-
Explorer 

1.0b 

CogTool-
Explorer 

1.0c 

%Success 
0.74 

(0.68, 0.78) 
0.25 

(0.18, 0.32) 
23.0% 40.4% 

%ErrorFreeSuccess 
0.81 

(0.77, 0.85) 
0.59 

(0.52, 0.64) 
42.3% 47.5% 

LinkClicks 
0.36 

(0.35, 0.37) 
0.35 

(0.35, 0.36) 
150% 187% 

GoBacks 
0.25 

(0.22, 0.28) 
0.31 

(0.29, 0.33) 
91.4% 175% 
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(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 22: CogTool-Explorer 1.0c compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

4.2.1.5.1 Addition of Confidence 
In CogTool-Explorer 1.0c, there is a reappearance of tasks where participants were more successful 

than the model. To investigate, we examine the tasks where participants were most successful, that 

is, on task with the highest %ErrorFreeSuccess, where participants would be expected to be least 

likely to be exploring in a random fashion, and where a systematic model will have a better chance 

of explaining the behavior. After sorting the 36 tasks by highest %ErrorFreeSuccess by participants, 

the topmost tasks are Fern, Niagara River, Pigeon and Hubble Space Telescope. In the Fern task, 

CogTool-Explorer 1.0c was only 4% less successful than participants, a margin of error acceptable 

for an engineering model and unlikely to reduce unless we over-fit the data. In the Pigeon task, 

although CogTool-Explorer 1.0c was 19% less successful than participants, poorly estimated 

infoscent values could explain for the under-performance by the model and this will be discussed in 

Section 4.2.1.6.2.  Therefore, this investigation focuses on the Niagara River and the Hubble Space 

Telescope tasks, where CogTool-Explorer 1.0c was less successful than participants by 47% and 

49% respectively. 

In the Niagara River task, inspection of the CogTool-Explorer 1.0c model runs and participant trials 

in more detail reveal that the model was going back from 2nd-level pages when participants did not. 

R
2
 = 0.25 

%AAE = 40.4% 

R
2
 = 0.59 

%AAE = 47.5% 

R2 = 0.35 

%AAE = 187% 

R2 = 0.31 

%AAE = 175% 
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Participants never went back from the 2nd-level Geography page after selecting the correct top-level 

Geography link. However, CogTool-Explorer 1.0c went back from the 2nd-level Geography page 60% 

of the time after selecting the correct top-level Geography link. This suggests that the links in the 

top-level page looked very attractive to CogTool-Explorer 1.0c and were pulling the model back to 

the top-level page. For the Niagara River task, the infoscent of the correct top-level Geography link 

(LSA cosine value = 0.235) is an order of magnitude higher than the other top-level link with the 

next highest infoscent (top-level History link with LSA cosine value = 0.049). In fact, the infoscent of 

all the other top-level links other than Geography and History had negative LSA cosine values. So 

why was the model going back from the 2nd-level Geography page when the alternative links on the 

top-level page were not that attractive? Let’s revisit the GoBack utility update equation: 

UtilityGoBack =  MIS(links assessed on previous page) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent      [Eq. 3] 

 

Consider a model run where CogTool-Explorer 1.0c evaluated and decided to choose the top-level 

Geography link. After CogTool-Explorer 1.0c selected the top-level link with the highest assessed 

infoscent and transited to its 2nd-level page, Eq. 3 included the high infoscent value of the 

Geography link in its first operand and attracted the model back to the top-level page! This 

behavior violates common sense; since the model had just selected the best top-level link to visit its 

2nd-level page, it should not be pulled back to the previous page by the infoscent of that selected 

top-level link. This reasoning motivated a change to the GoBack utility update equation, to exclude 

the selected link from the previous page when computing the mean infoscent of the previous page, 

thus, changing Eq. 3 to Eq. 4: 

UtilityGoBack =  MIS(links assessed on previous page excluding the selected link) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent      [Eq. 4] 

 

In the Hubble Space Telescope task, inspection of the CogTool-Explorer 1.0c model runs and 

participant trials in more detail also reveal that the model was going back from 2nd-level pages 

when participants did not. Participants never went back from the 2nd-level Physical Science and 

Technology page after selecting the correct top-level Physical Science and Technology link. However 

CogTool-Explorer 1.0c went back from the 2nd-level Physical Science and Technology page 66% of 

the time after selecting the correct top-level Physical Science and Technology link. Further 

investigation reveal a different problem from that in the Niagara River task, however. As explained 

in section 4.2.1.1, on transiting to a new page, the second operand in Eq. 3 is reinitialized to an 

empty list. After CogTool-Explorer 1.0c selected the best link it saw on the top-level page and 

transited to its 2nd-level page, if the first link the model saw on the 2nd-level page had very low 

infoscent, the value of the second operand in the Goback utility update equation, that is, the mean 

information scent of links assessed on current page, would be low, and that would make the GoBack 

utility high. In the Hubble Space Telescope task, the GoBack utility could be high enough for the 
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model to choose to go back after evaluating just the first link in the 2nd-level Physical Science and 

Technology page, when that link happened to be a low infoscent link. 

However, this behavior also violates common sense; since the model had just selected the best link 

in the top-level page because it looked most promising. The model should carry that confidence into 

the next page and should not immediately go back just because the first link it saw on the 2nd-level 

page did not relate to the task goal. This reasoning motivated another change to the GoBack utility 

update equation, this time to the second operand, to include the selected link from the previous 

page when computing the mean information scent of the current page, changing Eq. 4 to Eq. 5: 

UtilityGoBack =  MIS(links assessed on previous page 
   excluding the selected link) 
 – MIS(links assessed on current page 
   including the selected link from the previous page) 
 – GoBackCost 
 where MIS is Mean Information Scent      [Eq. 5] 

 

This second change to the GoBack utility update equation has a nice symmetry with the first change, 

carrying along the “confidence” inspired by the high infoscent top-level link that was selected. Note 

that on transiting to a new page, the list of infoscents for the current page (in the second operand of 

Eq. 5) is still reinitialized to an empty list, but now, the infoscent of the selected link from the 

previous page will be included when computing the second operand. With Eq. 5, if the infoscent of 

the selected link from the previous page was very high compared to the other links in the previous 

page, those other top-level links alone would not exert much pull on the model to go back. If the 

infoscent of the selected link from the previous page was high relative to the first few links the 

model sees on the current page, the model would not go back until it “loses confidence” by seeing 

several low infoscent links in the current page, thereby diluting the effect of the high infoscent link 

from the previous page that led the model to this current page. CogTool-Explorer 1.0d uses Eq. 5 for 

its GoBack utility update equation. 

Table 8 presents the results for CogTool-Explorer 1.0d in the multi-page layout (converged after 13 

sets of model runs). With the new GoBack utility update equation, CogTool-Explorer 1.0d improved 

on almost all metrics except for R2GoBacks. Comparing Figures 23a to 22a and 23b to 22b, the new 

GoBack utility update equation resulted in a movement of those data points above the diagonal 

(tasks on which participants were successful) towards the right (CogTool-Explorer 1.0a have 

became as successful). 



 
62 

Table 8: CogTool-Explorer 1.0c and 1.0d compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0c 

CogTool-
Explorer 

1.0d 

CogTool-
Explorer 

1.0c 

CogTool-
Explorer 

1.0d 

%Success 
0.25 

(0.18, 0.32) 
0.74 

(0.70, 0.78) 
40.4% 22.6% 

%ErrorFreeSuccess 
0.59 

(0.52, 0.64) 
0.81 

(0.78, 0.84) 
47.5% 42.4% 

LinkClicks 
0.35 

(0.35, 0.36) 
0.36 

(0.36, 0.37) 
187% 147% 

GoBacks 
0.31 

(0.29, 0.33) 
0.27 

(0.24, 0.29) 
175% 88.5% 

 
 
 
 

  
(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 23: CogTool-Explorer 1.0d compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

R2 = 0.74 

%AAE = 22.6% 

R2 = 0.81 

%AAE = 42.4% 

R2 = 0.36 

%AAE = 147% 

R2 = 0.27 

%AAE = 88.5% 
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Compare the results of CogTool-Explorer 1.0d (Table 8) to the results of CogTool-Explorer 1.0b 

(Table 4) and it appears that these two models matched participant data in a similar way. In fact, 

compared to the 26% of go-back actions by participants (Table 6), the percentage of go-back 

actions by CogTool-Explorer 1.0d dropped to 5%, negating the improvement gained by CogTool-

Explorer 1.0c, and is even less than the 6% by CogTool-Explorer 1.0b.  

CogTool-Explorer 1.0b has a higher GoBackCost of 5 that makes the model less likely to go back (Eq. 

3); CogTool-Explorer 1.0d has a lower GoBackCost of 1 but adds the confidence mechanism in the 

GoBack utility update equation that also makes the model less likely to go back (Eq. 5). The similar 

results by both CogTool-Explorer 1.0d and 1.0b may suggest that this is just the replacement of one 

inhibition factor (higher GoBackCost) by another (confidence mechanism). However, in CogTool-

Explorer 1.0d, these changes represent two different influences on the model’s go-back behavior: 

the GoBackCost models the fixed cost incurred from interacting with the UI to go back, while the 

confidence mechanism makes the model less likely to go back depending on how attractive is the 

selected link on the previous page that led it to the current page. This confidence is dynamic since 

the higher the infoscent of the selected link on the previous page, the stronger the inhibition to go 

back. 

While the combined GoBackCost and the confidence mechanism in CogTool-Explorer 1.0d 

improved the results from CogTool-Explorer 1.0c, it reintroduced the low percentage of go-back 

actions previously seen in CogTool-Explorer 1.0b. The next section will revisit this problem and 

introduce a further change to the model that builds on the confidence mechanism. 

4.2.1.5.2 Updating of Confidence 
Participant data reveal that 26% of participant actions on 2nd-level pages were go-backs, but only 

5% of CogTool-Explorer 1.0d actions on 2nd-level pages were go-backs. When participant trials and 

model runs on the same tasks were inspected in more detail, a pattern common across tasks was 

found: Participants would visit a 2nd-level page and after selecting a few 2nd-level links that were 

incorrect, that is, 2nd-level links that did not lead to the correct 3rd-level page, participants would go 

back to the top-level page. In contrast, for the same task, when CogTool-Explorer 1.0d visited that 

same 2nd-level page, the model tended to select more incorrect 2nd-level links and persisted longer 

in that 2nd-level page before going back to the top-level page. It is interesting that Budiu and Pirolli 

(2007) made a similar observation about go-back behavior by their DOI-ACT model compared to 

their participant data. DOI-ACT on average took more clicks than participants did to complete their 

tasks and Budiu and Pirolli explained that this indicates “the backtracking heuristics used by people 

is not fully captured by the (DOI-ACT) model.” 

In CogTool-Explorer 1.0d, when the model transits to a 2nd-level page from the top-level page, or 

when the model goes from a 3rd-level page back to a 2nd-level page, the list of infoscents for the 

current page (in the second operand of Eq. 5) is reinitialized to an empty list, and the infoscent of 

the selected top-level link that led the model to this 2nd-level page becomes the confidence factor in 

the second operand. This meant that each time after the model selected a 2nd-level link that turned 

out to be incorrect, the model would go back to the 2nd-level page and the GoBack utility reverted to 

the same value as when the model initially transited to this 2nd-level page after selecting its top-

level link. 
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However, it would be more reasonable to expect that when the selected 2nd-level links turned out to 

be incorrect, the model should progressively lose confidence about that 2nd-level page, since those 

selected 2nd-level links had the highest evaluated infoscents, thus, most expected by the model to be 

the correct link among links that were evaluated in the 2nd-level page. If those high infoscent links 

in the 2nd-level page turned out to be incorrect, then this 2nd-level page may not be so good after all 

and the model should progressively be more likely to go back to the top-level page. 

The above reasoning led to a further change to the confidence mechanism introduced in CogTool-

Explorer 1.0d, to make the model lower its confidence about the current page as the model selects 

links on that page that turned out to be incorrect. CogTool-Explorer 1.0e implements this change by 

using Eq. 6 as its GoBack utility update equation. First, consider the inclusion of the selected link 

from the previous page (in the second operand of Eq. 6) as the confidence factor for the current 

page. When the model selects a link on the current page that turns out to be incorrect, the model 

adds one link count with zero infoscent to the confidence factor of the current page, thus lowering 

the confidence as more links on the current page turned out to be incorrect. A lower confidence will 

result in a higher GoBack utility, making the model more likely to go back. 

UtilityGoBack =  MIS(links assessed on previous page 
   excluding the selected link) 
 – MIS(links assessed on current page 
   including the selected link from the previous page and 

   incorrect links from the current page) 
 – GoBackCost 
 where MIS is Mean Information Scent 
 and incorrect links count as zero information scent   [Eq. 6] 

 

Note that as explained earlier in this section, the list of infoscents assessed on the current page (in 

the second operand of Eq. 6) is reinitialized to an empty list each time the model visits or revisits a 

page. Another detail to note is that the confidence factor for the current page accumulates the 

counts of incorrect links until the model goes back from the current page, that is, if the model goes 

from a 2nd-level page back to the top-level page, and later reselects the top-level link and revisits 

this 2nd-level page, the confidence factor will be initialized to the newly assessed infoscent of the 

top-level link with no counts of incorrect links. 

By updating the confidence factor in the GoBack utility update equation, the percentage of go-back 

actions increased from 5% in CogTool-Explorer 1.0d to 9% in CogTool-Explorer 1.0e, but did not 

bring it on par with the 26% of go-back actions by participants. Table 9 presents the results for 

CogTool-Explorer 1.0e in the multi-page layout (converged after 11 sets of model runs). Updating 

the confidence improved the metrics for GoBacks and all other metrics except R2%Success in 

CogTool-Explorer 1.0e. Comparing CogTool-Explorer 1.0e to CogTool-Explorer 1.0d on %Success 

(Figures 24a and 23a), it appears that CogTool-Explorer 1.0e became more successful than 

participants on some tasks, as seen in the shifting of some data points from the left of the diagonal 

in Figure 23a to the right of the diagonal in Figure 24a, thus, weakening the linear relationship and 

lowering R2%Success. The next section will investigate probable causes for why CogTool-Explorer 

1.0e became more successful than participants on some tasks. 
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Table 9: CogTool-Explorer 1.0d and 1.0e compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0d 

CogTool-
Explorer 

1.0e 

CogTool-
Explorer 

1.0d 

CogTool-
Explorer 

1.0e 

%Success 
0.74 

(0.70, 0.78) 
0.62 

(0.55, 0.67) 
22.6% 22.1% 

%ErrorFreeSuccess 
0.81 

(0.78, 0.84) 
0.83 

(0.80, 0.86) 
42.4% 42.1% 

LinkClicks 
0.36 

(0.36, 0.37) 
0.40 

(0.40, 0.41) 
147% 135% 

GoBacks 
0.27 

(0.24, 0.29) 
0.41 

(0.38, 0.43) 
88.5% 81.3% 

 
 
 
 
 

  
(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 24: CogTool-Explorer 1.0e compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 
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4.2.1.6 Alignment to Human-scale Speed of Execution 
CogTool-Explorer 1.0e became more successful than participants on a number of tasks, as seen in 

the shifting of some data points from the left of the diagonal in Figure 23a to the right of the 

diagonal in Figure 24a. One concern is whether CogTool-Explorer 1.0e was running faster and 

doing more actions per unit time compared to participants. If so, this would have allowed the model 

to explore more of the website in the same period of time and increased its task success rate 

compared to participants. It would also result in the model making more link selections in non-

successful model runs as the model continued to make link selections until it ran out of time, 

exacerbating the overly aggressive selection and reselection of links by the model, as discussed in 

the later part of Section 4.2.1.4 (after Figure 20). 

Participant data reveal that the average duration between link selections by participants was 7.4 

seconds, but the average duration between link selections by CogTool-Explorer 1.0e was only 4.8 

seconds. Therefore, CogTool-Explorer 1.0e did have a faster speed of execution compared to 

participants. It is important to rectify this unfair advantage so that the model does not over predict 

task success rates. The next two sections will describe two flaws that contributed to the problem, 

one in the mock-up of the multi-page layout, and the other in the CogTool-Explorer 1.0e model, and 

describe model changes to address these two flaws and align the model speed of execution to better 

match that of participants. 

4.2.1.6.1 Refinement of Perceptual-Motor Requirements in Task 
If the modeling of the UI in which the exploration takes place imposed fewer perceptual-motor 

requirements than it should in reality, it would allow the model to run faster and do more in the 

same time period. Figure 25 shows the mock-up of the multi-page layout in CogTool-Explorer 1.0e. 

The mock-up was generated automatically by importing the webpages from the original experiment 

website. The import function renders and extracts the position, dimension, text and target URL of 

each link from the actual webpages and creates the mock-up (Section 4.3.1 describes this in more 

detail). Links in the 3rd-level pages were not included in the mock-up because in a 3rd-level page, 

links were listed alphabetically and participants could directly check for the target link in a 3rd-level 

page, thus, unlike in the top-level and 2nd-level pages, assessing the infoscent of links and 

exploration behavior do not apply in the 3rd-level pages. 
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Figure 25: Part of the mock-up of the multi-page layout in CogTool-Explorer 1.0e. The entire 

mock-up is composed of 103 webpages (one top-level page, nine 2nd-level pages and ninety-

three 3rd-level pages). This figure shows the top-level page, a 2nd-level page and a 3rd-level 

page.  

In CogTool-Explorer 1.0e, every time the model transits to a page after selecting a link, software 

code will compare the name of that new page to the name of the target page specified at the start of 

the model run, to check if the model has reached the target page that indicates a successful model 

run. In the multi-page layout, the specified target page will be one of the 3rd-level pages. If the 

names match, CogTool-Explorer 1.0e will stop. If the names do not match, the model will continue 

to run and explore that page. If the new page is a 3rd-level page, the model will “see” no links on the 

page (which does not require any eye movements in the ACT-R vision module) and that will trigger 

the action to go back to the previous 2nd-level page. 

The absence of 3rd-level links in the above mock-up was intended to approximate the deterministic 

nature of the task when in 3rd-level pages. However, it also removed the perceptual-motor 

requirement on CogTool-Explorer 1.0e to move its simulated eye to where the target link should be 

in the page, to check if the target link was actually present or not, just as participants had to do.  

This simplification of model actions in 3rd-level pages could explain for the shorter duration 

between link selections by CogTool-Explorer 1.0e compared to participants. 

A second perceptual-motor action that participants had to do in the task, but was missing from 

CogTool-Explorer 1.0e and the mock-up of the multi-page layout, is the need to look at and click on 

the web browser’s go-back button to go back to the previous page. In CogTool-Explorer 1.0e and 

previous versions of CogTool-Explorer, when the model decides to go back to the previous page, the 

go-back production will trigger software code to update the model’s visual field with the previous 

page, which is the same software code that updated the model’s visual field with a new page when a 

link is selected. While links are part of the imported webpage and CogTool-Explorer 1.0e will look 

at a link in the mock-up to click it, the web browser’s go-back button is not part of the webpage and 

thus is not imported into the mock-up. There is no presumption that the task environment is a web 

browser, for example, the webpages could be a prototype of a mobile phone with its own unique go-

back mechanism, thus, go-back buttons are not automatically inserted into the mock-up. However, 

for our purpose of comparing model behavior to participant data to refine the model, this 
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simplification of model actions needed for going back to the previous page could explain for the 

shorter duration between link selections by CogTool-Explorer 1.0e compared to participants. 

To rectify the missing perceptual-motor requirements described above, additional UI widgets are 

added to the mock-up as shown in Figure 26, and additional model productions are added to 

CogTool-Explorer 1.0f for the procedural knowledge associated with these additional widgets. The 

first type of widget added is a link widget in each of the 3rd-level pages. When CogTool-Explorer 1.0f 

transits to a 3rd-level page that is not the target webpage, the existence of at least one link in the 

page will cause the model to move its simulated eye and look at it, which is the default behavior of 

the model. These link widgets are specially marked so that after CogTool-Explorer 1.0f looks at the 

link, new model productions in CogTool-Explorer 1.0f will direct the model to go back to the 

previous page. While this does not capture the detailed process of looking for the target link at its 

expected location in the alphabetical list of links on a 3rd-level page, it adds a simple perceptual-

motor requirement on CogTool-Explorer 1.0f that approximates what participants have to do in 3rd-

level pages. 

 

Figure 26: Part of the mock-up of the multi-page layout in CogTool-Explorer 1.0f. The entire 

mock-up is composed of 103 webpages (one top-level page, nine 2nd-level pages and ninety-

three 3rd-level pages). This figure shows the top-level page, a 2nd-level page and a 3rd-level 

page. 

The second type of widget added to the mock-up is a button widget in each of the 2nd-level and 3rd-

level pages, positioned at the top left corner of the page as shown in Figure 26. These button 

widgets are also specially marked so that when the model decides to go back to the previous page, 

new model productions in CogTool-Explorer 1.0f will direct the model to look at the button widget, 

move the virtual mouse pointer over the button and click on it. Each of these buttons has a 

transition that points to its corresponding previous page, and clicking on the button will update the 

model’s visual field with the previous page, which is the default behavior of following a transition. 

These button widgets simulate the go-back button located at the top left corner of the browser 

window that participants have to click on to go back to the previous webpage in the experiment. 

With the addition of the above UI widgets to the mock-up of the multi-page layout and the 

additional model productions in CogTool-Explorer 1.0f to enable the model to interact with these 

added widgets, the average duration between link selections increased from 4.8 seconds in 
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CogTool-Explorer 1.0e to 5.5 seconds in CogTool-Explorer 1.0f. Although CogTool-Explorer 1.0f 

now takes longer between link selections, it is still not on par with the 7.4 seconds between link 

selections by participants. The next section will describe another change in a different part of the 

model to address this gap. 

4.2.1.6.2 Refinement of Duration to Access Information Scent 
In CogTool-Explorer 1.0f and earlier versions of CogTool-Explorer, the speed at which the model 

runs, as indicated by the duration between observable actions like link selections, is determined by 

the number of model productions that fire between link clicks and the duration that each 

production took to fire. CogTool-Explorer 1.0f uses the default duration of 50ms for each 

production firing, which has been the established standard in ACT-R modeling. However, the 

shorter duration between link selections by CogTool-Explorer 1.0f compared to participants 

prompts a relook at where in the model the 50ms duration may not be valid. 

In CogTool-Explorer 1.0f, like in SNIF-ACT 2.0, a sequence of three productions are respectively 

responsible for looking at a link, encoding the text of the link into the visual buffer, and assessing 

the infoscent of the encoded link text with respect to the task goal. The first two productions in this 

sequence, the duration for the production to look at a link, which is determined by EMMA (Salvucci, 

2001), and the duration for the encode production, which is the default 50ms, are all well 

established in the ACT-R modeling literature. The third production to assess the infoscent of a link 

with respect to the task goal is unique to the CogTool-Explorer and SNIF-ACT 2.0 models. This 

production will take the encoded text of the link, and the text from the task goal, and invoke a LISP 

function to compute the infoscent of the link with respect to the goal. The LISP function will then 

update the utilities of the three competing productions (see Section 4.2.1.1) based on the link’s 

infoscent. 

This LISP function is an example of a black-box implementation of the cognitive processes to assess 

infoscent. A black-box implementation is useful for a computationally efficient implementation of a 

complex cognitive process, and would sometimes, as is the case for SNIF-ACT 2.0 (Fu & Pirolli, 

2007), be accompanied with an explanation of how the black-box implementation could map to an 

implementation that uses more native ACT-R modeling mechanisms such as spreading activation 

between declarative memory chunks. However, this substitution meant that in CogTool-Explorer 

1.0f, the 50ms duration for the single production that invokes a LISP function to assess infoscent 

would be shorter than the duration of a more native ACT-R implementation that requires multiple 

model productions with latencies from declarative memory retrievals. 

The above reasoning motivated iterative tests of setting longer durations for the assess infoscent 

production, starting with 100ms steps and narrowing down to 5ms steps. At 275ms for the assess 

infoscent production in CogTool-Explorer 1.1, the average duration between link selections 

increased to 7.4 seconds, bringing it on par with the 7.4 seconds by participants. Table 10 presents 

the results for CogTool-Explorer 1.1 in the multi-page layout (converged after 9 sets of model runs). 

Comparing CogTool-Explorer 1.1 to CogTool-Explorer 1.0e on %Success (Figures 27a and 24a), the 

longer duration between link selections by CogTool-Explorer 1.1 resulted in lower %Success on 

tasks by the model, as evident from the shifting of data points towards the left in Figure 27a, thus 

strengthening the linear relationship and increasing R2%Success. 
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Table 10: CogTool-Explorer 1.0e and 1.1 compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0e 

CogTool-
Explorer 

1.1 

CogTool-
Explorer 

1.0e 

CogTool-
Explorer 

1.1 

%Success 
0.62 

(0.55, 0.67) 
0.75 

(0.70, 0.79) 
22.1% 26.1% 

%ErrorFreeSuccess 
0.83 

(0.80, 0.86) 
0.82 

(0.78, 0.85) 
42.1% 41.0% 

LinkClicks 
0.40 

(0.40, 0.41) 
0.38 

(0.37, 0.39) 
135% 111% 

GoBacks 
0.41 

(0.38, 0.43) 
0.27 

(0.24, 0.30) 
81.3% 84.4% 

 
 
 
 
 

  
(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

Figure 27: CogTool-Explorer 1.1 compared to participant data in the multi-page layout. Each 

data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level page in 

a task. If model behavior perfectly matched participant data, all data points will lie on the 

green diagonal line. The red line is the best fitting line for the data points. 

R2 = 0.75 

%AAE = 26.1% 

R2 = 0.82 

%AAE = 41.0% 

R2 = 0.38 

%AAE = 111% 

R2 = 0.27 

%AAE = 84.4% 
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Figure 27b shows an outlier task, the Pigeon task, where %ErrorFreeSuccess by participants was 

82% but only 37% in CogTool-Explorer 1.1. In fact, the Pigeon task had shown up as an outlier 

in %ErrorFreeSuccess since CogTool-Explorer 1.0a (Figure 19b). In the Pigeon task, the correct top-

level link is “Life Sciences” and the correct 2nd-level link is “Birds”. The 46 participants selected 

other top-level links 20% of the time before selecting the correct top-level link “Life Science”, and 

among those other selected top-level links, participants never selected “History”. In contrast, 

CogTool-Explorer 1.1 selected the top-level link “History” 43% of the time before selecting the 

correct top-level link “Life Science”. Why did the model find “History” attractive given the task 

Pigeon whereas participants never selected “History”? 

The infoscent of a link is based on the semantic similarity between the link text and the task goal. 

The goal for the Pigeon task was: 

“Pigeon, common name for members of a family of birds; smaller species are commonly known as 

doves, but sizes of pigeons and doves overlap. The birds, almost worldwide in distribution, are most 

abundant in warm regions. Pigeons have small heads, short necks, stout bodies with short legs, and 

sleek plumage and have a fleshy or waxy protuberance, the cere, at the base of the bill. They dwell in 

trees or on the ground and feed on seeds, fruit, acorns and other nuts, and insects. Pigeons fly rapidly 

and are noted for their cooing call. They build loose, almost flat, nests of twigs, bark, straw, and 

weeds; the female lays one or two tan or white eggs. The appropriately named white-crowned pigeon, 

a Caribbean species that extends north to southern Florida, is the only wild member of its genus 

found in the eastern United States. Among the pigeons called doves, many are widely distributed in 

Eurasia and Africa.” 

In CogTool-Explorer 1.0, that is, before the refinement of the infoscent estimate for top-level links, 

the model selected “Life Science” and “History” only 6% and 8% of the time respectively, because 

the infoscent of both these links, including the correct link “Life Science”, were negative given the 

task goal! Interestingly, the most selected top-level link was “Geography”, which had positive 

infoscent and was the second highest among the top-level links; the geographic terms in the last 

two sentences of the task goal contributed to the high infoscent for “Geography”. After the 

refinement of the infoscent estimate for top-level links in CogTool-Explorer 1.0a and later, the 

infoscents of “History” and “Life Science” are now higher than “Geography”, and are in fact the 

highest and second highest among the top-level links. Why would “History” have a higher infoscent 

and thus appear more attractive to CogTool-Explorer 1.1 than the correct link “Life Science” given 

the goal for the Pigeon task? 

Further digging reveals that the links in the 2nd-level “History” page is the reason: 

 African History 
 Ancient History 
 European History 
 History of Asia and Australasia 
 History of the Americas 
 People in European History 
 People in United States History 
 United States History 
 World History and Concepts 
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The text of 2nd-level links "People in United States History" and "United States History" make the 

top-level link “History” look attractive given the goal for the Pigeon task. In fact, if a small change is 

made to the task goal by removing the words "United States" near the end of the task goal, the 

infoscent of “History” will be reduced from being the highest among the top-level links, to less than 

one-third that of “Life Science”, which now has the highest infoscent among the top-level links. The 

model would then be less likely to select “History” before selecting “Life Science”, which would have 

improved the model’s %ErrorFreeSuccess in the Pigeon task and moved the outlier in Figure 27b 

towards to right. This investigation revealed a potential pitfall in computational estimation of 

infoscent, that even sophisticated and state-of-the-art algorithms like LSA, which have been shown 

to correlate with human assessments of text semantic similarity and is applied in automated 

grading of standardized test essays, can occasionally make estimations of infoscent that may be 

quite different from assessments by people. Since computational estimates of infoscent may not 

perfectly correlate with human assessments, some number of outliers or mismatches between 

model behavior and participant data would be expected even for an otherwise perfect model, until 

further research improve these estimation algorithms. 

4.2.1.7 Summary of the Performance of CogTool-Explorer 1.1 
Figure 28 plots the results over the seven iterations from CogTool-Explorer 1.0 to CogTool-Explorer 

1.1 on the multi-page layout. CogTool-Explorer 1.1 improved on all comparison metrics over 

CogTool-Explorer 1.0: correlations with participant data have become higher on all four task 

performance measures and %AAE compared to participant data have become smaller on all four 

measures. 

The improvements in correlations for %Success and %ErrorFreeSuccess are large: R2%Success more 

than doubled to 0.75 and R2%ErrorFreeSuccess almost doubled to 0.82. Although there is room for 

improvement, these values are in the range where UI designers could use them to identify the tasks 

at the extremes. That is, these metrics identify which tasks are sufficiently supported by the UI that 

effort can be diverted to other areas and which tasks are in most need of attention. While there are 

also improvements in %AAE for these two task performance measures, the improvements are 

modest and not yet within the 10-20% range that Kieras et al. (1997) considered desirable for UI 

design practice. 

In contrast to the above two task performance measures, the improvement in R2LinkClicks to 0.38 is 

more modest, and R2GoBacks is practically unchanged at 0.27. While %AAE for LinkClicks is almost 

halved to 111%, that for GoBacks is practically unchanged at 83.9%, and both are far from the 10-

20% range that Kieras et al. (1997) considered desirable for UI design practice. Furthermore, the 

percentage of go-back actions by CogTool-Explorer 1.1 marginally dropped to 8% (from 9% by 

CogTool-Explorer 1.0e), which is less than a third of the 26% of go-back actions by participants. 

There are two possible explanations for the poorer match by CogTool-Explorer 1.1 to participant 

data in LinkClicks and GoBacks. First, as discussed in the later part of Section 4.2.1.4 (after Figure 

20), the preponderance of data points to the right of the diagonal in Figure 27c could be accounted 

for by a free-running model that is less successful than participants. Figure 27a shows that CogTool-

Explorer 1.1 was less successful than participants in the majority of the tasks, and in these tasks, 



 

 

73  

73 

there would be more model runs than participant trials where the free-running CogTool-Explorer 

1.1 could continue to select links until the task time was up. 

Another possible reason could be due to differences in the estimated infoscent values used by 

CogTool-Explorer 1.1 versus the perceived infoscent of links by participants. In fact, Blackmon et al. 

(2002) explicitly noted such “a bias in LSA’s similarity estimates with respect to actual user 

judgment”, that “LSA is more likely to overestimate than underestimate the similarity of items”, and 

prescribed “allowing the analyst to reduce LSA’s similarity estimate, and reject a proposed 

competing link label, is an approximate response to this problem.” Overestimation of infoscent 

would make more links look attractive to the model than they actually did to participants and the 

model would thus select links that participants did not. Overestimation of infoscent would also 

delay the model from going back to the previous top-level page because more links on 2nd-level 

pages would look attractive given the task goal. This could account for the lack of go-back actions as 

seen in the majority of data points to the left of the diagonal in Figure 27d and in the 8% of go-back 

actions by CogTool-Explorer 1.1 compared to 26% by participants. 

Although there is room for improvement in future research, the relative success of CogTool-

Explorer 1.1 compared to CogTool-Explorer 1.0 emboldens the move to the next challenge, the half-

flattened layout. 
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(a) %Success (b) %ErrorFreeSuccess 

  
(c) LinkClicks (d) GoBacks 

 
Figure 28: Results over seven iterations from CogTool-Explorer 1.0 to CogTool-Explorer 1.1 in the 
multi-page layout. The blue diamond markers and the left vertical axis are for Correlation, where 
higher is better. The red square markers and the right vertical axis are for % Average Absolute Error, 
where lower is better. 
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4.2.2 HALF-FLATTEN LAYOUT 
The half-flatten layout and tasks in this dissertation are from AutoCWW experiment Expt040423 

(Cross-Validation Experiment in Blackmon et al., 2005). In this layout (Figure 29), like in the multi-

page layout (Figure 16), the task goal is presented in the paragraph of text under the line “Find 

encyclopedia article about…” at the top of the top-level and 2nd-level pages. Participants start in the 

top-level page and on selecting a link, transits to 2nd-level pages. The half-flatten layout differs from 

the multi-page layout by showing the top-level links in 2nd-level pages, thus, participants can see 

both top-level links and 2nd-level links in 2nd-level pages. This half-flattened arrangement is akin to 

the accordion8 menu pattern in UI design, in that only one top-level link can be expanded at a time. 

In a 2nd-level page, participants may select a top-level link to go to another 2nd-level page, or may 

select a 2nd-level link to go to its 3rd-level page (not shown in Figure 29 but shown in Figure 16). In a 

3rd-level page, like in the multi-page layout, participants can check that they have succeeded in the 

task if the target link (“Audiometer” in the example in Figure 29) is in that 3rd-level page, otherwise, 

participants will go back to the 2nd-level page and continue exploration. Each task has only one 

correct 3rd-level page that contains the target link, and there is only one correct top-level link and 

only one correct 2nd-level link that lead to the correct 3rd-level page. 

                                                             
8 See for example http://ui-patterns.com/patterns/AccordionMenu 

Figure 29: In the half-flatten tasks, participants start in the top-level page (leftmost) and on 
selecting a link, transits to 2nd-level pages. Participants can see both top-level links and 2nd-
level links in 2nd-level pages. Participants may select a top-level link to go to another 2nd-level 
page, or may select a 2nd-level link to go to its 3rd-level page (not shown here). In a 3rd-level 
page, participants can check if they have succeeded in the task, and if not, go back to the 2nd-
level page and continue exploration. 
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The half-flatten layout differs from the multi-page layout by showing the top-level links in 2nd-level 

pages. For CogTool-Explorer 1.1, this presents two possible ways for the model to evaluate links in 

these 2nd-level pages before selecting a link. The first way considers the 2nd-level links that are 

revealed on transiting to a 2nd-level page to form a group. On transiting to a 2nd-level page, the 

model first continues exploration among the member links of the group (Figure 30a), and if and 

when the model decides to go back from the group, it will then continue exploration among the 

members of the parent group, which are the top-level links and the group of 2nd-level links (Figure 

30b). The second way does not differentiate between the 2nd-level links from the top-level links in 

the same 2nd-level page. On transiting to a 2nd-level page, the model continues exploration among all 

selectable links, that is, the newly exposed 2nd-level links plus all the top-level links in the 2nd-level 

page. 

  
(a) (b) 

Figure 30: Blue rectangles show the visual elements available at different stages of a group-

based hierarchical exploration process in the half-flatten layout. Figure (a) shows on 

transiting to a 2nd-level page and Figure (b) shows after going back from the group of 2nd-

level links.  

The thesis of this dissertation hypothesizes that a model that considers groups can make more 

accurate predictions of user exploration compared to a model that does not, assuming that 

participants did recognize and utilize the group relationships in the layout. This suggests the first 

way, which follows the group-based hierarchical exploration process developed from the multi-

page layout, when applied to the half-flatten layout, should match participant data better, and 
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foreshadows a similar result when group-based hierarchical exploration is applied to the multi-

group layout with nine groups (Figure 14c). To investigate which of these two ways will result in 

model behavior that matches participant data better, Section 4.2.2.1 will describe additions made to 

CogTool-Explorer 1.1 to enable the expression of group relationships in the device model, and for 

the user model to see and utilize these group relationships during exploration, resulting in CogTool-

Explorer 1.2. Sections 4.2.2.2 and 4.2.2.3 will respectively describe in more detail these two ways of 

operation by CogTool-Explorer 1.2: the first way that considers group relationships (Consider 

Groups), and the second way that ignores group relationships and treats all links as equals (Ignore 

Groups). Section 4.2.2.4 will then compare how well Consider Groups and Ignore Groups by 

CogTool-Explorer 1.2 match participant data. 

4.2.2.1 Enable Group Relationships in CogTool-Explorer 1.2 

To enable CogTool-Explorer 1.1 to consider group relationships during exploration, two sets of 

additions are made to CogTool-Explorer 1.1 that resulted in CogTool-Explorer 1.2. The first set of 

additions are to the device model (region D in Figure 9) to express group relationships in the UI. In 

the ACT-R vision module, the location of an object in the visual field is represented by a visual-

location object (an ACT-R chunk) that has the attributes (ACT-R chunk slots) for on-screen x and y 

coordinates. The visual-location object also has other slots for basic visual features that are 

available pre-attentively, such as color and size. As discussed in Section 2.4.2, similarity in basic 

visual features is one way that groups of visual objects may be perceived and influence visual 

search, thus, the visual-location object is an appropriate place to express group relationships in the 

device model. 

The additions to the device model comprises of two parts. First, a member-of-group slot is added to 

each visual-location object. Second, a visual-location object is created for each group in the layout. 

For each visual-location object that belongs to a group, for example a 2nd-level link in the half-

flatten layout, the member-of-group slot in the 2nd-level link’s visual-location object will have a slot 

value that references the group’s visual-location object. Since a group’s visual-location object also 

has a member-of-group slot, nested groups can be represented in this scheme. For visual-location 

objects that do not belong to any group, for example the top-level links and the group of 2nd-level 

links in the half-flatten layout, their visual-location objects’ member-of-group slot will have a slot 

value of nil. 

The second set of additions are to the user model (region U in Figure 9) to enable CogTool-Explorer 

1.2 to see the group relationships now expressed in the device model and follow a group-based 

hierarchical exploration process. First, a group-in-focus slot is added to the ACT-R chunk that 

represents the model’s exploration goal and is initialized to nil. Second, model productions were 

modified to (1) constrain the visual search to visual-location objects with member-of-group slots 

that match the group-in-focus slot, (2) when the model decides to select a group to focus on, push 

the current value of the group-in-focus slot into the exploration history and update the group-in-

focus slot to reference the new group, (3) when the model decides to select a link and transits to a 

new page, push the current value of the group-in-focus slot into the exploration history and update 

the group-in-focus slot to nil, and (4) when the model decides to go back, update the group-in-focus 

slot to the most recent entry in the exploration history, and then delete that most recent entry in 



 
78 

the exploration history. Existing code in CogTool-Explorer 1.2 correctly handles the two cases that 

occur in the half-flatten layout, where the decision to go back will lead to a previous group in the 

same page and where the decision to go back will lead to a previous page. Sections 4.2.2.2 and 

4.2.2.3 illustrates how these two sets of additions operate in the half-flatten layout. 

As explained in Section 3.2, this dissertation does not attempt to investigate the psychological 

processes of how visual groups are formed and recognized, but rather focuses on how groups affect 

exploration. Thus, group relationships are provided as input to CogTool-Explorer 1.2 from either 

the human modeler, as is the case in this dissertation (Section 4.3.2 describes this in more detail) 

and other prior research (for example, AutoCWW by Blackmon et al., 2002, 2003, 2005; Halverson 

& Hornof, 2006, 2007, 2008; and DOI-ACT by Budiu & Pirolli, 2007), or in future work from other 

computational models of visual grouping (for example, Rosenholtz, Twarog, Schinkel-Bielefeld & 

Wattenberg, 2009). 

4.2.2.2 Consider Groups: Operation of CogTool-Explorer 1.2 
Figure 31 illustrates an example run of Consider Groups by CogTool-Explorer 1.2 in the half-flatten 

layout. Note that steps 1 to 5a in Figure 31 follows CogTool-Explorer 1.0 in the two-column layout 

as presented in Figure 10 and Sections 4.1.1 to 4.1.4, and CogTool-Explorer 1.1 in the multi-page 

layout as presented in Figure 17 and Section 4.2.1.1, thus this section will start from step 5b where 

the model transits to a 2nd-level page in the half-flatten layout. 

On transiting to a 2nd-level page, the model’s group-in-focus slot is set to reference the group of 2nd-

level links (step 5b). The model will request the ACT-R vision module for unattended visual-

location objects with matching member-of-group slots, thus, exploration is constrained to the 

member links of the group (Figure 30a). The model will look at the nearest link in the group (Figure 

31, step 5c), evaluate the link’s infoscent (step 5d) and remember the link as the best widget (can 

be a link or a group, but only links apply in this stage of this example as there are no nested groups) 

if it has the highest infoscent so far in the page, and then decide to either look at and evaluate 

another link (step 5e), or stop and select the best link seen so far in the group (step 6), or go back 

from the group (step 7). This three-way decision uses the same utility update equations and 

parameter values as CogTool-Explorer 1.1. 

If and when CogTool-Explorer 1.2 decides to go back from the group of 2nd-level links, the group-in-

focus slot will be set to nil, and its memory of the best widget so far (can be a link or a group, and 

both apply in this stage of this example) will be reset to be updated with a new best going forward. 

The model will then continue exploration, now constrained to the top-level links and the group of 

2nd-level links (Figure 30b), making the same three-way decision after each evaluation. In this 

example, the model decided to stop and select the best link after evaluating several links (Figure 31, 

step 8). 
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Figure 31: An example run of Consider Groups by CogTool-Explorer 1.2 in the half-flatten 

layout. 
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There are four additional details about the operation of CogTool-Explorer 1.2 in the half-flatten 

layout. First, the default behavior of CogTool-Explorer 1.2 is to start exploration on a new page with 

the group-in-focus slot set to nil, which is appropriate when the new page is different from the 

previous page. However, in the half-flatten layout, the top-level and 2nd-level pages are actually 

continuations of one another: transiting to a 2nd-level page reveals the 2nd-level links associated 

with the selected top-level link, and the appropriate model behavior is to continue exploration 

within the group of 2nd-level links. Thus, on visiting a 2nd-level page, the model knows to focus on 

the group of 2nd-level links in that page and continue its exploration there. This specific knowledge 

is implemented by an implicit focus on the group upon transiting to a 2nd-level page, by pushing the 

initial nil value of the group-in-focus slot into the exploration history and updating the group-in-

focus slot to reference the group of 2nd-level links. 

Second, on a basis of minimal assumption, the default reselection behavior of CogTool-Explorer 1.2 

is to treat all links in the layout as unique. However, in the half-flatten layout, the top-level and 2nd-

level pages are actually continuations of one another: the top-level links that have the same display 

labels in the top-level and 2nd-level pages are actually the same link. Therefore, the model should 

treat them as the same link with respect to the reselection behavior (Section 4.2.1.4). Thus, when 

the model attempts to retrieve from memory if a top-level link had been previously selected, for 

example “Physical Science and Technology” in the 2nd-level page (Figure 31), an ACT-R chunk that 

represents the “Physical Science and Technology” link in the top-level page that had its status slot 

set to chosen will match and may be retrieved. This specific knowledge is implemented by matching 

on the common substring from the widget-name slot (in this example, the substring “Physical 

Science and Technology”) when the model attempts to retrieve from memory if a top-level link had 

been previously selected, instead of matching on the entire string from the widget-name slot that is 

unique for every link in the device model. 

Third, when CogTool-Explorer 1.2 chooses to focus on a group of 2nd-level links, or chooses to select 

the top-level link associated with the group, the resulting model behaviors are the same: 

exploration continues among the member links of the group. Therefore, the model should treat 

these two actions as the same. Thus, when the model attempts to retrieve from memory whether 

the “Physical Science and Technology” group had been previously focused on, an ACT-R chunk that 

represents the “Physical Science and Technology” link that had its status slot set to chosen will 

match and may be retrieved. Like in the previous paragraph, this specific knowledge is also 

implemented by matching on the common substring in the widget-name slot when the model 

attempts to retrieve from memory if a group had been previously focused on, instead of matching 

on the entire widget-name slot that is unique for every link and group in the device model. 

Furthermore, in the half-flatten layout, the text that is assembled (Section 4.3.2.1 describes this in 

detail) to compute the infoscent of a group is the same assembled text used to compute the 

infoscent of its top-level link as described in Section 4.2.1.3. 

Finally, on a 2nd-level page in this layout, the top-level link associated with the group is modeled as 

a Remote Label of the group (Section 4.3.2.1 describes Remote Labels in detail) because it is a 

heading that describes its associated group. Although the visual-location object representing the 

heading link has its member-of-group slot set to nil, which matches the model’s group-in-focus slot, 
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the model will not consider it as a potential link to look at after going back from the group in a 2nd-

level page. This specific knowledge is implemented by making Remote Labels not match the 

model’s request to the ACT-R vision module for unattended visual-location objects. While this way 

of modeling a group and its heading link is a simplification of how people would look at and relate 

the heading link to its group, it meant that CogTool-Explorer 1.2 would see nine options (one group 

and the other eight top-level links) after going back from the group in a 2nd-level page; the same 

number of options (nine top-level links) as in the top-level page of the multi-page layout.  Future 

work, with the availability of human eye-tracking data, can investigate and model how people relate 

the heading link to its group in more detail. 

4.2.2.3 Ignore Groups: Operation of CogTool-Explorer 1.2 
Figure 32 illustrates an example run of Ignore Groups by CogTool-Explorer 1.2 in the half-flatten 

layout. Note that steps 1 to 5a in Figure 32 are identical to those in Figure 31 and were previously 

explained, thus, this section will start from step 5b where the model transits to a 2nd-level page in 

the half-flatten layout. 

It is very easy to make CogTool-Explorer 1.2 ignore groups in the half-flatten layout. First, the group 

relationships in the 2nd-level pages are simply removed or not modeled in the first place (Section 

4.3.2 describes this in detail), thus, all the links’ visual-location object have their member-of-group 

slot set to nil. Second, the implicit focus on the group upon transiting to a 2nd-level page that was 

added in Consider Groups is removed, reverting CogTool-Explorer 1.2 to its default behavior of 

starting exploration on a new page with the group-in-focus slot set to nil. Without any links 

belonging to a group and no groups to focus on, CogTool-Explorer 1.2 will simply explore the half-

flatten layout in the same manner as in the multi-page layout (compare Figure 31 to Figure 17). On 

transiting to a 2nd-level page, the model will proceed as it did on the previous top-level page: it will 

look at the nearest link (step 5b), evaluate the link’s infoscent (step 5c) and remember the link as 

the best link if it has the highest infoscent so far in the page, and then decide to either look at and 

evaluate another link (step 5d), or stop and select the best link seen so far on the page (step 6), or 

go back to the previous page (step 7). Like in Consider Groups, this three-way decision uses the 

same utility update equations and parameter values as CogTool-Explorer 1.1. 
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Figure 32: An example run of Ignore Groups by CogTool-Explorer 1.2 in the half-flatten 

layout. 

4.2.2.4 Test of CogTool-Explorer 1.2 
To test CogTool-Explorer 1.2, the comparison metrics were computed from model runs in the half-

flatten layout and from participant data in the AutoCWW experiment. That experiment included the 

same 36 tasks from the multi-page layout, that is, the same task goal and correct 3rd-level page, 

except now the tasks are performed in the half-flatten layout. Participants had 130 seconds to 

complete each task, failing which the trial is considered a failure. There were 51 to 60 valid 

participant trials recorded for each task. 

Table 11 presents the results for both Consider Groups (converged after 15 sets of model runs) and 

Ignore Groups (converged after 10 sets of model runs) by CogTool-Explorer 1.2 in the half-flatten 

layout and Figure 33 shows the scatter plots where each data point represents a task (Figures 33a 

to 33d) or a link in a task (Figures 33e and 33f). Results for the measure GoBacks are not in this 

analysis because as explained in section 4.2.1, go-back actions by participants are eye movements 

and were not recorded in the participant log files. Results that show Consider Groups matching 

participant data better than Ignore Groups would support the thesis of this dissertation. However, 

the results are mixed. For correlation, Consider Groups is only marginally better than Ignore 

Groups as indicated by R2%Success (0.68 versus 0.66) and R2%ErrorFreeSuccess (0.82 versus 

0.81), but Consider Groups is worse than Ignore Groups as indicated by R2LinkClicks (0.38 versus 

0.48). For %AAE, Consider Groups is worse than Ignore Groups on all three measures: %Success 

(27.0% versus 26.2%), %ErrorFreeSuccess (41.3% versus 33.8%) and LinkClicks (135% versus 

105%). These mixed results do not give clear support for the thesis of this dissertation. On a 

positive note, the same model parameters used in CogTool-Explorer 1.1 for the multi-page layout 

transferred to CogTool-Explorer 1.2 for the half-flatten layout without worsening the fit between 
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model and participants very much; the results from CogTool-Explorer 1.2 (Table 11) are 

comparable to the results from CogTool-Explorer 1.1 (Table 10). This suggests that the model 

parameters are not over fitted to a particular layout and do work in another layout. 

For CogTool-Explorer 1.2, the mixed results in the half-flatten layout suggest that a group-based 

hierarchical exploration process did not provide a clear advantage. One possible explanation may 

be that in the half-flatten layout, the number of links and groups in the 2nd-level page is not large 

enough for a group-based process to make a clear difference. Section 4.2.3 will investigate this by 

running CogTool-Explorer 1.2 on a layout with many more visible links. 

Table 11: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the half-flatten layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

Consider 
Groups 

Ignore 
Groups 

Consider 
Groups 

Ignore 
Groups 

%Success 
0.68 

(0.64, 0.72) 
0.66 

(0.60, 0.71) 
27.4% 26.4% 

%ErrorFreeSuccess 
0.82 

(0.79, 0.84) 
0.81 

(0.78, 0.84) 
41.7% 33.6% 

LinkClicks 
0.38 

(0.37, 0.38) 
0.48 

(0.47, 0.49) 
135% 105% 
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Figure 33: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the half-flatten layout. Each data point in (a) (b) (c) and (d) represents a 

task, and in (e) and (f) a link in a task. If model behavior perfectly matched participant data, 

all data points will lie on the green diagonal line. The red line is the best fitting line for the 

data points. 
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4.2.3 MULTI-GROUP LAYOUT 
The multi-group layout and tasks in this dissertation are from AutoCWW experiment Expt100419. 

In this layout (Figure 34), like in the multi-page and half-flatten layouts (Figures 16 and 29), the 

task goal is presented in the paragraph of text under the line “Find encyclopedia article about…” at 

the top of the page. Unlike the previous two layouts, the multi-group layout completely flattens the 

top-level and 2nd-level pages, so all 2nd-level links are visible on the top-level page and there are no 

2nd-level pages. Selecting a link in the multi-group layout transits to 3rd-level pages like those in the 

previous two layouts (not shown in Figure 34 but shown in Figure 16). In a 3rd-level page, like in the 

previous layouts, participants can check that they had succeeded in the task if the target link 

(“Audiometer” in the example in Figure 34) is in that 3rd-level page, otherwise, participants will go 

back to the top-level page and continue exploration. Each task has only one correct 3rd-level page 

that contains the target link, and there is only one correct link in the top-level page that will lead to 

that correct 3rd-level page. 

Like the half-flatten layout in section 4.2.2, the multi-group layout presents two possible ways for 

CogTool-Explorer 1.2 to evaluate links in the top-level page before selecting a link. In Consider 

Figure 34: In the multi-group tasks, participants can see all nine groups of links on 
the top-level page. Selecting a link will transit to 3rd-level pages like those in the 
multi-page and half-flatten layouts (not shown here). In a 3rd-level page, 
participants could check if they had succeeded in the task, and if not, go back to the 
top-level webpage and continue exploration. 
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Groups, the model will start by evaluating groups and select a group to focus on, and then continue 

exploration among the member links of that group. If and when the model decides to go back from 

that group, it will revert to evaluating groups and select another group to focus on. In Ignore 

Groups, the model will explore among all selectable links in the page, without following the group-

based hierarchical exploration process. 

The thesis of this dissertation hypothesizes that a model that considers groups can make more 

accurate predictions of user exploration compared to a model that does not, assuming that 

participants did recognize and utilize the group relationships in the layout. However, in the 

previous test on the half-flatten layout in section 4.2.2.4, results were mixed between Consider 

Groups and Ignore Groups. One possible explanation is that the number of links and groups in the 

half-flatten layout is relatively small, compared to the number of links and groups in the multi-

group layout. To investigate this, Sections 4.2.3.1 and 4.2.3.2 will respectively describe the 

operation of Consider Groups and Ignore Groups by CogTool-Explorer 1.2 in the multi-group layout. 

Section 4.2.3.3 will then compare how well Consider Groups and Ignore Groups by CogTool-

Explorer 1.2 match participant data. 

4.2.3.1 Consider Groups: Operation of CogTool-Explorer 1.2 
Figure 35 illustrates an example run of Consider Groups by CogTool-Explorer 1.2 in the multi-group 

layout. As explained in Section 4.2.2.1, each of the nine groups in the layout is represented by a 

visual-location object with its member-of-group slot set to nil, and each of the 93 links has its 

member-of-group slot reference its group’s visual-location object. The model’s point of visual 

attention starts in the top-left corner of the page (step 1) and will request the ACT-R vision module 

for unattended visual-location objects with member-of-group slots matching the model’s group-in-

focus slot. With the group-in-focus slot initialized to nil, the model will begin exploration among the 

nine groups. The model will look at the nearest group (step 2a), evaluate the group’s infoscent (step 

2b) and remember the group as the best widget if it has the highest infoscent so far in the page, and 

then decide to either look at and evaluate another group (step 2c), or stop and focus on the best 

group seen so far (step 3). To compute the infoscent scores for the nine groups, the text that is 

assembled (Section 4.3.2.1 describes this in detail) for each of the nine groups is the same as the 

assembled text for each of the corresponding nine groups in the half-flatten layout, thus, the 

corresponding groups in the multi-group layout and in the half-flatten layout have the same 

computed infoscent score. 

When the model decides to focus on the best group, it will update its group-in-focus slot to reference 

that group (Step 4) and its memory of the best widget so far will be reset to be updated with a new 

best going forward. CogTool-Explorer 1.2 will then request the ACT-R vision module for unattended 

visual-location objects with member-of-group slots matching the model’s updated group-in-focus 

slot, thus, exploration is now constrained to the member links of the focused group. The model will 

look at the nearest link in the group (step 5a), evaluate the link’s infoscent (step 5b) and remember 

the link as the best widget if it has the highest infoscent so far in the group, and then decide to 

either look at and evaluate another link (step 5c), or stop and select the best link seen so far in the 

group (step 6), or go back from the group (step 7). This three-way decision uses the same utility 

update equations and parameter values as CogTool-Explorer 1.1. 
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Figure 35: An example run of Consider Groups by CogTool-Explorer 1.2 in the multi-group 

layout. 
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If and when CogTool-Explorer 1.2 decides to go back from the group, the group-in-focus slot will be 

set to the most recent entry in the exploration history, which in this case is nil. The model will then 

continue exploration, now back amongst the nine groups. In this example, the model decided to 

stop and focus on the best group after evaluating several groups (step 8). 

There is one additional detail about the operation of CogTool-Explorer 1.2 in the multi-group 

layout. In the actual experiment website, the nine top-level headings (Sports Hobbies, & Pets, 

Performing Arts, etc) are not clickable links, but are non-interactive text labels. In the UI mockup, 

these nine headings are modeled as Text Label widgets, and are Remote Labels of their respective 

groups (Section 4.3.2.1 describes Remote Labels in detail) because each is a heading that describes 

its associated group. Although the visual-location objects representing these nine widgets have 

their member-of-group slots set to nil, which matches the model’s group-in-focus slot, the model will 

not consider them as potential widgets to be looked at separately from their associated groups. This 

specific knowledge is implemented by making Remote Labels not match the model’s request to the 

ACT-R vision module for unattended visual-location objects. While this way of modeling a group 

and its text heading is a simplification of how people would look at and relate the text heading to its 

group, it meant that CogTool-Explorer 1.2 would see nine groups of links in the multi-group layout; 

the same number of options as in the top-level of both the multi-page and half-flatten layouts. 

Future work, with the availability of human eye-tracking data, can investigate and model how 

people relate the heading to its group in more detail. 

4.2.3.2 Ignore Groups: Operation of CogTool-Explorer 1.2 
Figure 36 illustrates an example run of Ignore Groups by CogTool-Explorer 1.2 in the multi-group 

layout. Like Ignore Groups on the half-flatten layout in section 4.2.2.3, it is very easy to make the 

model ignore groups in the multi-group layout: the group relationships are simply removed or not 

modeled in the first place (Section 4.3.2 describes this in detail), thus, all the links’ visual-location 

objects have their member-of-group slot set to nil. Without any links belonging to a group and no 

groups to focus on, the model will simply explore the multi-group layout in the same manner as in 

the multi-page layout (compare Figure 36 to Figure 17) and the Ignore Groups case in the half-

flatten layout (compare Figure 36 to Figure 32). Steps 1 to 4 in Figure 36 follow the same process as 

previously described for those two other layouts. 
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Figure 36: An example run of Ignore Groups by CogTool-Explorer 1.2 in the multi-group 

layout. 

4.2.3.3 Test of CogTool-Explorer 1.2 
To test CogTool-Explorer 1.2, the comparison metrics were computed from model runs in the multi-

group layout and from participant data in the AutoCWW experiment. That experiment included the 

same 36 tasks from the multi-page and half-flatten layouts, that is, the same task goal and correct 

3rd-level page, except now the tasks are performed in the multi-page layout. Participants had 130 

seconds to complete each task, failing which the trial is considered a failure. There were 36 valid 

participant trials recorded for each task. 

Table 12 presents the results for both Consider Groups (converged after 16 sets of model runs) and 

Ignore Groups (converged after 15 sets of model runs) by CogTool-Explorer 1.2 in the multi-group 

layout and Figure 37 shows the scatter plots where each data point represents a task (Figures 37a 

to 37d) or a link in a task (Figures 37e and 37f). As explained in section 4.2.2.4, results for the 

measure GoBacks are not in this analysis because go-back actions by participants are eye 

movements and were not recorded in the participant log files. For correlation, Consider Groups is 

better than Ignore Groups on all three measures: %Success (0.67 versus 0.46) and 

%ErrorFreeSuccess (0.72 versus 0.34), and LinkClicks (0.33 versus 0.25). For %AAE, Consider 

Groups is also better than Ignore Groups on all three measures: %Success (30.2% versus 33.4%), 

%ErrorFreeSuccess (45.6% versus 84.2%) and LinkClicks (115% versus 133%). 
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In contrast to the mixed results between Consider Groups and Ignore Groups in the half-flatten 

layout, here in the multi-group layout, Consider Groups matched participant data consistently 

better than Ignore Groups; thus, these results support the thesis of this dissertation. The support is 

especially evident from the measure %ErrorFreeSuccess. Figures 37c and 37d show the scatter plots 

of %ErrorFreeSuccess by Consider Groups and Ignore Groups respectively compared to participant 

data, where each data point represents one of the 36 tasks. Without group information to guide 

exploration, the large number of selectable links (93 links in total) makes it less likely that the 

model will see and evaluate the correct link before it decides to stop and select the best link seen so 

far. Thus, while Consider Groups was able to select the correct link on its first attempt on the same 

tasks as participants did (upper right quadrant of Figure 37c), Ignore Groups failed to do the same 

on those tasks (upper left quadrant of Figure 37d). 

Furthermore, the same model parameters used in CogTool-Explorer 1.1 for the multi-page layout 

and in CogTool-Explorer 1.2 for the half-flatten layout transferred to CogTool-Explorer 1.2 for the 

multi-group layout without worsening the fit between model and participants very much; the 

results from CogTool-Explorer 1.2 (Table 12: Consider Groups) are comparable to the results from 

CogTool-Explorer 1.2 (Table 11) and CogTool-Explorer 1.1 (Table 10). This suggests that the model 

parameters are not over fitted to a particular layout and do work in other layouts. 

Table 12: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the multi-group layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

Consider 
Groups 

Ignore 
Groups 

Consider 
Groups 

Ignore 
Groups 

%Success 
0.67 

(0.63, 0.71) 
0.46 

(0.39, 0.52) 
30.1% 33.2% 

%ErrorFreeSuccess 
0.72 

(0.68, 0.76) 
0.39 

(0.32, 0.45) 
45.0% 86.9% 

LinkClicks 
0.33 

(0.32, 0.33) 
0.25 

(0.25, 0.26) 
114% 132% 
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Figure 37: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the multi-group layout. Each data point in (a) (b) (c) and (d) represents a 

task, and in (e) and (f) a link in a task. If model behavior perfectly matched participant data, 

all data points will lie on the green diagonal line. The red line is the best fitting line for the 

data points. 
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4.2.4 COMPARISON OF COGTOOL-EXPLORER TO AUTOCWW’S PREDICTIONS 
The multi-page, half-flatten and multi-group layouts, tasks and participant data used in this 

dissertation were previously used in the research and development of AutoCWW (Blackmon et al., 

2005) and its related research (for example Toldy, 2009), thus, it is both relevant and interesting to 

test how CogTool-Explorer compares to AutoCWW’s predictions in these 36 tasks in each of the 

three layouts. There are two other prior related works that consider grouping (Table 1: Grouping), 

however, CoLiDeS is not an executable model and it’s references to visual search and grouping lacks 

implementation details; and DOI-ACT assumes knowledge specific to the DOI tree UI layout and 

uses human ratings for category scent scores. Thus, I could not readily create and run these models 

to generate predictions.   

As described in Section 2.6, AutoCWW predicts the mean number of link clicks that “users will make 

to accomplish a particular task on a specific webpage” (Blackmon et al., 2005, p. 31), that is, the 

mean number of link clicks in that webpage up to and including the click on the correct link. 

Blackmon et al. (2005) explained that predicted mean total clicks is “a measure of task difficulty”, 

the more clicks to success for a task, the harder the task is. A low predicted mean total clicks would 

also suggest that the UI supports the successful exploration and completion of the task. 

To compare AutoCWW’s predicted mean total clicks to CogTool-Explorer, another task performance 

measure, MeanClicksToSuccess: the mean number of link selections in participant trials or model 

runs to accomplish each task, is computed from both participant data and CogTool-Explorer model 

runs9. Since AutoCWW’s predicted mean total clicks is for a specific webpage, MeanClicksToSuccess 

by AutoCWW in the multi-page and half-flatten layouts can be derived by summing the predicted 

mean total clicks for the top-level page and the correct 2nd-level page. In the multi-group layout, 

since exploration takes place only on the top-level page, MeanClicksToSuccess by AutoCWW is 

simply the predicted mean total clicks for the top-level page. 

Both Blackmon et al. (2005) and Toldy (2009) reported participant data and AutoCWW’s 

predictions. However, for the multi-page layout, Toldy (2009) reported the mean total number of 

link clicks participants made on the top-level and 2nd-level pages (Table A-3 in Toldy, 2009), but did 

not separate successful from failure trials. Toldy (2009) also reported AutoCWW’s predicted mean 

total clicks, but only for the 2nd-level page. For the half-flatten layout, the original experiment had 

64 tasks (Cross-Validation Experiment in Blackmon et al., 2005) but results for individual tasks 

were not reported. However, this dissertation uses the subset of 36 tasks from those 64 tasks that 

are shared with the multi-page layout. For the multi-group layout, the participant data was 

collected from a new experiment that has not been previously reported in the literature, thus, no 

AutoCWW analysis has been reported for these 36 tasks in the multi-group layout. Therefore, in 

this dissertation, I tabulated MeanClicksToSuccess by participants from the original participant data 

                                                             
9 Unsuccessful trials are excluded because some participants would click two or three links and then do 

nothing until time ran out whereas others continued to click (as does CogTool-Explorer). Also, AutoCWW’s 

predicted mean total clicks is the number of link selections that users would make to accomplish a particular 

task on a specific webpage, which by definition, excludes unsuccessful trials. 
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files, and ran AutoCWW analyses for these 36 tasks on all three layouts. Section 2.6 gives a general 

walkthrough of how to use the AutoCWW website to analyze these tasks. 

4.2.4.1 Multi-Page Layout 
To setup the 36 tasks in AutoCWW, each task is submitted by first entering the task goal presented 

in the paragraph of text under the line “Find encyclopedia article about…” (Figure 16) as the goal 

statement. Next, the links in the top-level page and the links in the correct 2nd-level page for that 

task are entered into AutoCWW. As explained in Section 3.1, AutoCWW is designed to work with 

regions that have heading text, but the column of top-level links does not have heading text, 

therefore, the goal text is entered as the heading text for the top-level page. For the 2nd-level page, 

its corresponding top-level link is entered as the heading text of a single region of the 2nd-level links. 

Like in the two-column layout, AutoCWW is set to use the “General_Reading_up_to_1st_year_college 

(300 factors)” semantic space, and set to do the default full elaboration on the link texts because the 

original link texts are short. Unlike in the two-column layout, AutoCWW is set to do the default full 

elaboration on the heading texts because the 2nd-level page is a categorical grouping of the links, 

however, it should be noted that with only a single region in each of the top-level and 2nd-level 

pages, the header text will not affect AutoCWW’s predictions (to be explained later in this section in 

the paragraph after Eq. 7), thus, the elaboration setting for header text will not matter but is still set 

accordingly for correctness. With these settings, AutoCWW will return the predicted mean total 

clicks for the top-level page and the 2nd-level page for each task. 

Figures 38a and 38b respectively show the scatter plots of MeanClicksToSuccess by CogTool-

Explorer 1.1 and by AutoCWW with the above settings, compared to participant data. CogTool-

Explorer 1.1 had a R2MeanClicksToSuccess of 0.72 and a %AAE of 42.4%, whereas AutoCWW had a 

R2MeanClicksToSuccess of 0.04 and a %AAE of 48.6%. Given that AutoCWW was developed and 

tested on experiment websites and tasks similar to the multi-page layout, and that the settings 

described above for AutoCWW follow the examples in the AutoCWW research publications (best 

described in Kitajima et al., 2005, and in Blackmon et al., 2005) and in the AutoCWW tutorial10, the 

poor match between AutoCWW and participant data on MeanClicksToSuccess is a surprise. 

AutoCWW’s prediction formula for predicted mean total clicks (Eq. 7) points to two possible 

explanations for the poor performance by AutoCWW: 

Mean Total Clicks =  2.292 
 + 1.757 (if Link is unfamiliar) 
 + 1.516 (if Link has a weak-scent) 
 + 0.655 * (number of competing links nested under competing headings) 
 + 0.0 * (number of competing links nested under the correct headings) 
 + 0.0 * (number of competing headings) 
 Where Link refers to the correct link on the webpage 
           [Eq. 7] 

 
First, the predicted mean total clicks is computed for each webpage. With two pages in the task and 

a minimum value or intercept of 2.292 in Eq. 7, AutoCWW predicts a minimum MeanClicksToSuccess 

                                                             
10 Downloaded on October 17, 2010 from http://autocww.colorado.edu/  
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of 4.584 for a task in the multi-page layout that has no identified problems that hinder successful 

exploration. However, Figure 38b shows there are tasks where participants took less than an 

average of 4.5 clicks to success and Figure 38a shows CogTool-Explorer 1.1 matched participant 

data on those tasks. Second, Eq. 5 is explicit that the number of competing links nested under the 

correct headings does not add to the predicted mean total clicks. While this appears counter-

intuitive, Eq. 5 was derived from a regression analysis of participant data from webpage layouts 

with multiple regions (Figures 2 and 17c) to identify the significant factors that hinders successful 

exploration, and the number of competing links nested under the correct headings was not one of 

them. Thus, in the case of the multi-page layout, where the top-level page and each of the 2nd-level 

pages have only one region in the page, competing links in the multi-page layout do not contribute 

to the predicted mean total clicks. 

   
(a) (b) (c) 

Figure 38: Results of MeanClicksToSuccess by CogTool-Explorer 1.1 and AutoCWW, 

compared to participant data in the multi-page layout. Each data point represents a task. If 

model behavior perfectly matched participant data, all data points will lie on the green 

diagonal line. The red line is the best fitting line for the data points. 

In the multi-page layout, the computed infoscent scores for links in the top-level page differ 

between AutoCWW and CogTool-Explorer 1.1 due to different elaboration methods. As described in 

section 4.2.1.3, AutoCWW identifies all the words in the selected LSA corpus that occur at least 50 

times in the corpus and have a minimum cosine of 0.5 with the link text vector, and appends these 

words to the link text before using LSA to compute the infoscent of the link. CogTool-Explorer 1.1 

does the same but further appends the link texts from the 2nd-level links associated with this top-

level link before using LSA to compute the infoscent of the top-level link. Thus, it will be interesting 

to see how AutoCWW will perform if it uses the same infoscent scores as CogTool-Explorer 1.1 uses 

for top-level links. To do this, in the setup of AutoCWW for the top-level page, the fully elaborated 

link text as per the method in CogTool-Explorer 1.1 is entered into AutoCWW, and AutoCWW is set 

to do no elaboration on the link text. 

Figure 38c shows the scatter plot of MeanClicksToSuccess by AutoCWW in such a setup, which 

improved AutoCWW’s R2MeanClicksToSuccess from 0.04 to 0.29 and reduced %AAE from 48.6% to 

36.1%. Comparing Figures 38c to 38b, this setup resulted in the data points representing tasks 

where participants took an average of 4 or fewer clicks to success, shifting towards the left 
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(AutoCWW now predicts these tasks will be more successful) and thus a better match to participant 

data, replicating a similar improvement as seen for CogTool-Explorer 1.0a in Section 4.2.1.3. 

Finally, it is also interesting to contrast these R2MeanClicksToSuccess results by AutoCWW and 

CogTool-Explorer 1.1 with the R2MeanClicksToSuccess of 0.56 reported for DOI-ACT by Budiu and 

Pirolli (2007). Although DOI-ACT was developed and tested on a different UI layout and set of tasks, 

and therefore results are not directly comparable, it is notable that CogTool-Explorer 1.1 achieved a 

stronger correlation with participant data on this metric in this particular example. 

4.2.4.2 Half-flatten Layout 
The initial steps to set up the half-flatten layout in AutoCWW follows that for the multi-group layout 

in the previous section: each task is submitted by first entering the task goal presented in the 

paragraph of text under the line “Find encyclopedia article about…” (see Figure 29) as the goal 

statement. Next, the links in the top-level page and the links in the correct 2nd-level page for that 

task are entered into AutoCWW, and AutoCWW is set to use the 

“General_Reading_up_to_1st_year_college (300 factors)” semantic space.  

There are two possible setups for the top-level page, following how in the previous section 

AutoCWW’s predictions improved when using the same infoscent scores as CogTool-Explorer 1.1. 

The first setup is for AutoCWW to use the default full elaboration of link texts: identify all the words 

in the selected LSA corpus that occur at least 50 times in the corpus and have a minimum cosine of 

0.5 with the link text vector, and appends these words to the link text before using LSA to compute 

the infoscent of the link. The second setup is to enter the fully elaborated link text as per the 

method in CogTool-Explorer 1.2, and set AutoCWW to do no elaboration on the link text. 

Where this setup differs from the multi-page layout in the previous section is that now, in the half-

flatten layout, there are two ways to model the 2nd-level pages in AutoCWW, similar to Consider 

Groups and Ignore Groups in CogTool-Explorer 1.2. The first way is as two regions of links, one 

region consisting of the 2nd-level links with the associated top-level link as the region’s heading, and 

the other region consisting of the rest of the top-level links with the goal text as the region’s 

heading (Sections 3.1 and 4.2.4.1 explain the use of the goal text as a region’s heading). The second 

way is as a single region consisting of all the links in a 2nd-level page with the goal text as the 

region’s heading. For both ways of modeling the 2nd-level pages, AutoCWW is set to do the default 

full elaboration for the 2nd-level links because the original link texts are short, and to do the default 

full elaboration for the heading texts because the region of 2nd-level links is a categorical grouping 

of those links. Although the region of top-level links is not a categorical grouping, the setting for 

elaboration of heading text is a global setting in AutoCWW and so priority is given to the region of 

2nd-level links. 

In combination, there are four possible configurations for AutoCWW and results from all four 

configurations are presented here. Figure 39 shows the scatter plots of MeanClicksToSuccess by 

CogTool-Explorer 1.2 and by the four configurations of AutoCWW. Compared to participant data, 

CogTool-Explorer 1.2 achieved R2MeanClicksToSuccess of 0.72 and 0.76, and %AAE of 40.6% and 

25.3%, respectively for Consider Groups (Figure 39a) and Ignore Groups (Figure 39b). For 

AutoCWW, the two configurations using the default elaboration method had R2MeanClicksToSuccess 
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of 0.17 and 0.08, and %AAE of 46.1% and 48.9%, respectively for two regions (Figure 39c) and 

one region (Figure 39d), whereas when using the same infoscent scores as CogTool-Explorer 1.2 for 

the top-level page, AutoCWW had R2MeanClicksToSuccess of 0.51 and 0.42, and %AAE of 36.0% 

and 37.1%, respectively for two regions (Figure 39e) and one region (Figure 39f). 

Interestingly, in contrast to the results by CogTool-Explorer 1.2 in the half-flatten layout where the 

participant data was matched no better by considering groups than ignoring groups, modeling the 

2nd-level page as two regions in AutoCWW resulted in predictions that matched participant data 

better than modeling the 2nd-level page as a single region. However, as explained in the previous 

section (the paragraph after Eq. 7), when modeled as a single region, competing links in the page do 

not contribute to the predicted mean total clicks, thus, the better results when modeled as two 

regions may be a consequence of enabling competing links to influence the prediction. The results 

for AutoCWW also mirror the findings from the previous section: (1) AutoCWW predicts a 

minimum MeanClicksToSuccess of 4.584 for a task in the half-flatten layout, thus, is unable to match 

participant data on tasks where participants took less clicks to success, and (2) using the same 

infoscent scores as CogTool-Explorer 1.2 for the top-level page improved AutoCWW’s predictions 

match to participant data. 
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Figure 39: Results of MeanClicksToSuccess by CogTool-Explorer 1.2 and AutoCWW, 

compared to participant data in the half-flatten layout. Each data point represents a task. If 

model behavior perfectly matched participant data, all data points will lie on the green 

diagonal line. The red line is the best fitting line for the data points. 
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4.2.4.3 Multi-Group Layout 
The current version of AutoCWW11 was developed and tested on layouts identical to the multi-

group layout, thus, the way to model the nine regions of links and the default settings to elaborate 

and compute the infoscent scores for links and regions are exactly stated in the examples from the 

AutoCWW research publications (best described in Kitajima et al., 2005, and in Blackmon et al., 

2005) and in the AutoCWW tutorial12 (Section 2.6 gives a general walkthrough). Each task is 

submitted by first entering the task goal presented in the paragraph of text under the line “Find 

encyclopedia article about…” (see Figure 34) as the goal statement. Next, the heading texts of the 

nine regions and the link texts of the 2nd-level links are entered into AutoCWW. AutoCWW is set to 

use the “General_Reading_up_to_1st_year_college (300 factors)” semantic space, and set to do the 

default full elaboration for the link texts because the original link texts are short, and to do the 

default full elaboration for the heading texts because the regions are categorical groupings of their 

member links. Both these default elaboration methods are described in Section 4.2.1.3. 

Figure 40 shows the scatter plots of MeanClicksToSuccess by CogTool-Explorer 1.2 and by 

AutoCWW. Compared to participant data, R2MeanClicksToSuccess by Consider Groups, Ignore 

Groups and AutoCWW were 0.63, 0.28 and 0.45 respectively, and %AAE were 80.9%, 81.3% and 

38.9% respectively. The R2MeanClicksToSuccess results add to the findings from the other 

measures presented in Table 12 and Figure 37, which is that for CogTool-Explorer 1.2 in the multi-

group layout, Consider Groups matched participant data consistently better than Ignore Groups and 

supports the thesis of this dissertation. 

However, the %AAE results by CogTool-Explorer 1.2 is double that of AutoCWW’s. While Consider 

Groups by CogTool-Explorer 1.2 achieved a stronger correlation with participant data compared to 

AutoCWW, CogTool-Explorer 1.2 made more link selections before task success, as reflected in the 

shallower gradient of the best-fitting line (Figure 40a), compared to AutoCWW’s predictions 

(Figure 40c). The better %AAE results by AutoCWW could be attributed to its formula for predicted 

mean total clicks [Eq. 7] being derived from a regression analysis of participant data from tasks 

performed in layouts identical to the multi-group layout. Section 4.2.1.7 offers another explanation 

for the poorer %AAE by CogTool-Explorer 1.2, which is that LSA tends to overestimate the 

infoscent between links and the task goal, and overestimation of infoscent would make more links 

look attractive to the model than they actually did to participants. This would make the model 

select links that participants did not, and select more links before going back from incorrect groups. 

Budiu and Pirolli (2007) made the same observation that their DOI-ACT model on average took 

more clicks than participants did to complete their tasks. Their explanation was that this indicates 

“the backtracking heuristics used by people is not fully captured by the (DOI-ACT) model.” 

                                                             
11 Accessed on October 17, 2010 at http://autocww.colorado.edu/~brownr/ACWW.php 

12 Downloaded on October 17, 2010 from http://autocww.colorado.edu/  
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(a) (b) (c) 

Figure 40: Results of MeanClicksToSuccess by CogTool-Explorer 1.2 and AutoCWW, 

compared to participant data in the multi-group layout. Each data point represents a task. If 

model behavior perfectly matched participant data, all data points will lie on the green 

diagonal line. The red line is the best fitting line for the data points. 
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4.2.5 SUMMARY OF RESULTS 
As explained in Section 4.2, the approach in this dissertation to make CogTool-Explorer consider 

grouping during exploration was to progressively test and modify CogTool-Explorer over three 

webpage layouts: multi-page, half-flatten and multi-group. 

We started in Section 4.2.1 by running CogTool-Explorer 1.0 from the two-column layout (Section 

4.1) on the multi-page layout, but the initial results were disappointing (Table 2). Inspecting model 

runs at a more detailed level, to find what might have led to the model’s poor performance and 

what could be done to improve the match between model behavior and participant data, led to a 

series of model refinements: (a) changed how the infoscent of top-level links are computed to 

better reflect participant experience, (b) enabled reselection of previously selected links in a single 

model run because data showed that participants did so, refined the model’s go-back behavior by 

(c) reducing the GoBackCost parameter, (d) adding a confidence mechanism and (e) updating the 

confidence the model has about the current page based on the outcome of link selections during 

exploration, and aligned the model’s speed of execution to match that of human participants by (f) 

adding two perceptual-motor requirements that were missing from the UI mockup and (g) 

increasing the duration associated with the production that assesses the infoscent of a link. With all 

these refinements implemented, CogTool-Explorer 1.1 improved on all comparison metrics over 

CogTool-Explorer 1.0, as shown in Table 13 (results compiled from Tables 3 and 10). 

Table 13: CogTool-Explorer 1.0 and 1.1 compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.0 

CogTool-
Explorer 

1.1 

CogTool-
Explorer 

1.0 

CogTool-
Explorer 

1.1 

%Success 
0.28 

(0.21, 0.35) 
0.75 

(0.70, 0.79) 
34.8% 26.1% 

%ErrorFreeSuccess 
0.44 

(0.37, 0.51) 
0.82 

(0.78, 0.85) 
54.2% 41.0% 

LinkClicks 
0.25 

(0.24, 0.25) 
0.38 

(0.37, 0.39) 
194% 111% 

GoBacks 
0.25 

(0.23, 0.28) 
0.27 

(0.24, 0.30) 
90.3% 84.4% 

 
In Section 4.2.2, we modified CogTool-Explorer 1.1 to enable the expression of group relationships 

in the device model, and to enable the user model to see and utilize the group relationships during 

exploration, resulting in CogTool-Explorer 1.2. We then ran two versions of CogTool-Explorer 1.2, 

one that considers groups and one that ignores groups, on the half-flatten layout. The results failed 

to show that considering groups during exploration made CogTool-Explorer 1.2 match participant 

data better, but the good news is the same model parameters used in CogTool-Explorer 1.1 for the 

multi-page layout transferred to CogTool-Explorer 1.2 for the half-flatten layout without worsening 

the fit between model and participants very much, as shown in Table 14 (results compiled from 

Tables 10, 11 and 12). 
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Table 14: CogTool-Explorer 1.1 compared to participant data in the multi-page layout, and 

CogTool-Explorer 1.2 compared to participant data in the half-flatten and multi-group 

layouts. The best results are highlighted in bold. 

 

Correlation, R
2
 

(95% confidence interval) 
%AAE 

CogTool-
Explorer 

1.1 

CogTool- 
Explorer 

1.2 

CogTool-
Explorer 

1.1 

CogTool- 
Explorer 

1.2 

Multi- 
Page 

Half-flatten Multi-
Group  

Multi-
Page 

Half-flatten Multi-
Group 

Consider 
Groups 

Ignore 
Groups 

Consider 
Groups 

Consider 
Groups 

Ignore 
Groups 

Consider 
Groups 

%Success 
0.75 

(0.70, 0.79) 
0.68 

(0.64, 0.72) 
0.66 

(0.60, 0.71) 
0.67 

(0.63, 0.71) 
26.1% 27.4% 26.4% 30.1% 

%ErrorFreeSuccess 
0.82 

(0.78, 0.85) 
0.82 

(0.79, 0.84) 
0.81 

(0.78, 0.84) 
0.72 

(0.68, 0.76) 
41.0% 41.7% 33.6% 45.0% 

LinkClicks 
0.38 

(0.37, 0.39) 
0.38 

(0.37, 0.38) 
0.48 

(0.47, 0.49) 
0.33 

(0.32, 0.33) 
111% 135% 105% 114% 

 
We then turned to the multi-group layout in Section 4.2.3, and ran the two versions of CogTool-

Explorer 1.2, one that considers groups and one that ignores groups. This time, the results (Table 

12) show that considering groups during exploration consistently made CogTool-Explorer 1.2 

match participant data better, which supports the thesis of this dissertation. Furthermore, the same 

model parameters used in CogTool-Explorer 1.1 and in CogTool-Explorer 1.2 for the half-flatten 

layout worked for the multi-group layout without worsening the fit between model and 

participants very much (Table 14), which suggests that the model parameters are not over fitted to 

any particular layout. 

Finally, in Section 4.2.4, we compared CogTool-Explorer to AutoCWW’s predictions on 

MeanClicksToSuccess in all three layouts. Although CogTool-Explorer did not consistently do better 

than AutoCWW on %AAE, CogTool-Explorer consistently had higher R2MeanClicksToSuccess with 

participant data compared to AutoCWW. These results suggest that CogTool-Explorer is at least as 

good and can be better than AutoCWW in differentiating between tasks at the extremes, that is, 

which tasks are sufficiently supported by the UI design and are mostly successful such that further 

design effort can be diverted to other areas, and which tasks and UI designs are less successful and 

thus in most need of further redesign effort. 
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4.3 INTEGRATION OF COGTOOL-EXPLORER INTO COGTOOL 
Section 3 presented the three research gaps in modeling goal-directed user exploration that are the 

focus of this dissertation: (1) consideration of layout position, (2) consideration of grouping and (3) 

implementation as a tool. Sections 4.1 and 4.2 presented the CogTool-Explorer model, to address 

both the first and second research gaps in consideration of layout position and grouping. This 

section presents design and implementation work done to integrate CogTool-Explorer 1.2 into 

CogTool, to address the third research gap in implementation as a tool. 

CogTool-Explorer 1.0 and earlier versions were not integrated into CogTool, and required many file 

manipulation and software coding steps to setup and run the model, which is not easy for use by 

modeling researchers, and not practical for use by practitioners. With help from the CogTool 

software development team13, this dissertation has integrated CogTool-Explorer 1.2 into CogTool, 

enabling a CogTool modeler to setup and run CogTool-Explorer models from within the direct-

manipulation UI of CogTool. The light blue rectangles in region T of Figure 9 show the new or 

refined components that are part of this integration, and Sections 4.3.1 to 4.3.5 describe this 

integration in detail. 

Furthermore, between January to March 2010, I conducted a series of design meetings with the 

CogTool software development team and Dr. Rachel Bellamy, a research collaborator from IBM’s T. 

J. Watson Research Center. In these meetings, I proposed new designs and led the discussion, 

critique and redesign of various menus, dialogs and views that pertain to the integration of 

CogTool-Explorer into CogTool. Appendices A and B present the design outcomes from this series of 

meetings, and Sections 4.3.3, 4.3.4 and 4.3.7 make references to their relevant parts in these 

Appendices. 

4.3.1 IMPORT OF WEBPAGES FROM WEBSITES 
CogTool has from its inception supported the creation of UI mockups by hand (lower left of Figure 

9). In CogTool’s Frame Window (Figure 41a), a modeler can use the drawing tools located on the 

left of the window and drag and drop standard UI widgets such as buttons and links onto a frame. In 

CogTool’s Design Window (Figure 41b), the modeler can create different frames and draw 

transitions from widgets to frames to indicate that certain actions on a widget, such as a mouse 

click, would result in the device model transiting to another frame, thus changing the display state 

of the UI. 

However, creating a mockup of a reasonably sized UI by hand for the CogTool-Explorer model to 

freely explore in is a time-consuming task. CogTool-Explorer 1.0 made the first steps towards 

automating the creation of UI mockups by importing webpages from websites. To set up the device 

model (region D in Figure 9), the first step is to run a web-crawling component, implemented as a 

separate JAVA program, with the URL of the website and the depth of the website to crawl and 

capture. The program would render each webpage encountered in the crawl, extracts its layout 

(position, dimension and text label of each link in the webpage) and link information (the target 

URL of each link in the webpage) and write it out to a data file in a XML format that CogTool reads. 

                                                             
13 Thanks to (in alphabetical order) Brett Harris, Dr. Michael Horowitz, Don Morrison and Ryan Myers. 
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The next step is to run CogTool and use its “Import from XML” function to read the data file and 

automatically create the UI mockup of the website, complete with all fames, links and transitions 

from links to their target frames (see Figure 41 for an example). The last step is to use CogTool’s 

“Export to ACT-R” function to create an ACT-R device model of the UI mockup and write it out as a 

LISP source code file. The file contains the source code for a LISP Object that when installed into an 

ACT-R model, such as CogTool-Explorer 1.0, functions as the device model which the user model 

(region U of Figure 9) can interact with. 

  
(a) Frame Window (b) Design Window 

Figure 41: In CogTool’s Frame Window, users can drag and drop standard UI widgets such 

as buttons and links from a palette of widgets onto a frame. A frame represents a display 

state in the UI. In CogTool’s Design Window, users can create different frames and specify 

how interface actions on a widget, such as a mouse click, changes the display state of the UI, 

by drawing transitions from that widget in its frame to another frame. 

Although CogTool-Explorer 1.0 made the creation of large UI mockups a lot less time-consuming, it 

was done in a separate program outside of CogTool and required further file manipuation steps by 

the modeler as described above. Beginning with CogTool-Explorer 1.0a, the JAVA code from the 

web-crawling component has been adapted and incorporated into CogTool. In CogTool-Explorer 

1.2, the modeler can simply select the “Import Design from HTML” menu item, specify one or more 

starting URLs, depths and other parameters in a dialog box (Figure 42), and hit “OK” to import 

webpages from the Web directly into a UI mockup from within the CogTool application, thus, 

streamlining the automated import of webpages from websites (lower left of Figure 9). 
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4.3.2 SPECIFICATION OF GROUPS 
Section 4.2.2.1 described two sets of additions in CogTool-Explorer 1.2, one to the device model 

(region D in Figure 9) to express group relationships in the UI, and the other to the user model 

(region U in Figure 9) to see the group relationships now expressed in the device model and follow 

a group-based hierarchical exploration process. In this dissertation, group relationships are 

provided by the human modeler as input to CogTool-Explorer 1.2, thus, we added new functionality 

to CogTool’s Frame Window to enable the modeler to specify and manipulate groups of widgets in 

the UI mockup (lower left of Figure 9). In a frame with widgets (for example Figure 41a), the 

modeler could select multiple widgets and issue the new “Group” command from either the menu 

or its keyboard shortcut. A group composed of the previously selected widgets would be created 

and automatically selected (Figure 43a). The properties panel on the right of the Frame Window 

would show the name of the group, which the modeler can edit, its Remote Label and Auxiliary Text 

(if any and also editable; described in Section 4.3.2.1) and a list of widgets that belong to this group. 

Clicking on a widget in the list, or directly on a widget that belongs to some group in the frame, will 

not only select the widget and highlight it with a gray border (which is standard CogTool behavior), 

but also highlight the group or groups that this widget belongs to with a red border (Figure 43b). 

Although not needed for modeling the UI layouts in this dissertation, we have also implemented the 

ability to created nested groups. The modeler can select multiple widgets and/or groups, and group 

them just as described in the previous paragraph. Although CogTool-Explorer 1.2 did not encounter 

nested groups in this dissertation, the model would behave appropriately if there were nested 

groups: if the model is currently focused on a group and decided to next focus on a group nested in 

the current group, the model would update the exploration history with the current group and 

exploration would continue within the nested group, and when the model decides to go back from 

the nested group, the model would revert its focus to the parent group by reading its entry off the 

exploration history. 

Figure 42: Import HTML Pages dialog box 
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(a) (b) 

Figure 43: To specify existing widgets form a group, the practitioner would multiple select 

these widgets and then issue the “Group” command from either the “Modify” menu or its 

keyboard shortcut. This will create a group composed of the previously selected widgets and 

the newly created group will be automatically selected with the group’s bounding box 

highlighted in green (Figure a). Selecting a widget that is a member of a group will highlight 

the widget with a gray border (which is standard CogTool behavior) and also highlight the 

group with a red border (Figure b). 

Another situation that was not encountered in this dissertation, but which we have also 

implemented, is the ability to specify that a widget or group (referred to in common as elements) 

belongs to more than one group. When the modeler is selecting multiple elements for inclusion in a 

new group, he or she can select an element that is previously included in the creation of some other 

group. In the device model (region D in Figure 9) of CogTool-Explorer 1.2, if an element belongs to 

two groups, two visual-location objects would be created for this element. These two visual-

location objects would be identical in every way except in the value of their member-of-group slot, 

where one visual-location object would reference the first group, and the other visual-location 

object would reference the second group. In the user model (region U in Figure 9) of CogTool-

Explorer 1.2, when the model makes a request to the ACT-R vision module, either visual-location 

objects could match. This is our first approximation at modeling how CogTool-Explorer 1.2 would 

perceive that an element belongs to more than one group. 

4.3.2.1 Textual Cues of Widgets, Groups and Remote Labels 
Each widget in a CogTool UI mockup can have a Displayed Label, for example, the selected link in 

Figure 43b has a Displayed Label “Rivers, Lakes, & Waterways”, which is rendered as part of the 

widget in the drawing area of the Frame Window, and is shown in the properties panel on the right 
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of the Frame Window in an editable text field. In the device model, the Displayed Label becomes the 

value of the value slot in the ACT-R visual object representing the widget. In CogTool-Explorer 1.1 

and earlier, when the model shifts its point of visual attention to read a link, the model takes the 

text in the value slot and the text from the task goal to compute the infoscent of the link with 

respect to the goal. 

To enable greater flexibility in the construction of the text string that is used to compute the 

infoscent of a widget, in CogTool-Explorer 1.2, we added an Auxiliary Text to each widget in a 

CogTool UI mockup. A widget’s Auxiliary Text is also shown in the properties panel on the right of 

the Frame Window in an editable text field, but is not rendered as part of the widget in the drawing 

area of the Frame Window. Now, in the device model, the Displayed Label becomes the value of a 

new display-label slot (as well as the value of the original value slot) in the visual object 

representing the widget. In addition, the visual object has a new textual-cue slot whose value is the 

concatenation of the texts in the Displayed Label, the Auxiliary Text and the textual-cue of its 

Remote Label (to be described later in this section). In CogTool-Explorer 1.2, when the model shifts 

its point of visual attention to read a link, the model takes the text in the textual-cue slot and the 

text from the task goal to compute the infoscent of the link with respect to the goal. The Auxiliary 

Text and the textual-cue slot enable the manual entry of additional text that elaborates the 

Displayed Label to better capture what the widget might mean to a user for the model, without 

editing the text of the Displayed Label. John, Blackmon, Polson, Fennell and Teo (2009) used the 

Auxiliary Text to elaborate buttons whose display label is an abbreviation, for example, “VNAV” on 

the Control Display Unit in the Boeing 777’s cockpit means “Vertical Navigation” and every Boeing 

777 pilot knows that, so those words were entered as Auxiliary Text. 

Unlike a widget, a group in a CogTool UI mockup does not have a Displayed Label because it is the 

widgets in the group and its nested groups that determine what the group looks like. A group can 

have an Auxiliary Text and/or a Remote Label, and the group’s textual-cue slot in the device model 

recursively constructs what the group looks like to the model: the textual-cue of a group is the 

concatenation of its Auxiliary text, the textual-cue of its Remote Label and the textual-cues of its 

constituent widgets and/or nested groups. 

Finally, in CogTool-Explorer 1.2, groups and some widget types like buttons can have a Remote 

Label. For example, in devices with soft buttons, that is, physical buttons that perform different 

functions depending on what is displayed on the device’s display located away from the button, like 

the aforementioned Boeing Control Display Unit or cellular phones that use the numeric keypad 

instead of touch screens; the button’s Remote Label enables the accurate placement of the button’s 

label at a location other than on the button itself in the UI mockup. The Remote Label appears in the 

UI mockup like the Displayed Label and is included in the widget’s textual-cue slot in the device 

model. In this dissertation, groups with Remote Labels are used in the mockups for the half-flatten 

and multi-group layouts, to model the groups of 2nd-level links with their associated top-level link 

(in the half-flatten layout) or text heading (in the multi-group layout). Figure 44 shows the multi-

group layout with the Performing Arts group selected. The properties panel on the right of the 

Frame Window shows that the group has a Remote Label “Performing Arts” (which is the text 

widget located above the group) and no Auxiliary Text.  Clicking on “Find” or the “Performing Arts” 
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text widget located above the group will select the Remote Label. Figure 45 shows the Remote 

Label “Performing Arts” selected and its owner, the Performing Arts group, highlighted by gray and 

red bounding boxes respectively. The properties panel shows that the Remote Label has 

“Performing Arts” as its Displayed Label and “arts art artistic artists painters sculpture sculptures 

architecture” entered as its Auxiliary Text. 

As described previously in this section, the Performing Arts group’s textual-cue slot is the 

concatenation of its Auxiliary text (which is blank in this example), the textual-cue of its Remote 

Label (which is the concatenation of its Displayed Text “Performing Arts” and Auxiliary Text “arts 

art artistic artists painters sculpture sculptures architecture”) and the textual-cues of its constituent 

widgets and/or nested groups. The constituent widgets of the Performing Arts group are six links 

with their respective Displayed Texts but all have neither Auxiliary Texts nor Remote Labels, thus, 

the textual-cue slot of the visual object representing the Performing Arts group has the value: 

“Performing Arts arts art artistic artists painters sculpture sculptures architecture 

Theater Musicians & Composers Cinema, Television, & Broadcasting Music Dance 

Musical Instruments” 

The text entered for the group’s Remote Label’s Auxiliary Text, “arts art artistic artists painters 

sculpture sculptures architecture”, is the standard elaboration (as described in Section 4.2.1.3) of 

the text “Performing Arts”, with words from the “General_Reading_up_to_1st_year_college (300 

factors)” LSA corpus that occur at least 50 times in the corpus and have a minimum cosine of 0.5 

with the “Performing Arts” text vector. Thus, the above textual-cue for the Performing Arts group is 

the same as the text used for computing the infoscent of the top-level link “Performing Arts”, as 

described in Section 4.2.1.3. 

 

Figure 44: The multi-group layout with the Performing Arts group selected, highlighted by a 

green bounding box. 
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Figure 45: The multi-group layout with the Remote Label “Performing Arts” selected, 

highlighted by a gray bounding box. Selecting a Remote Label will also highlight its owner, in 

this example the Performing Arts group, with a red bounding box. 

4.3.3 RETRIEVAL OF INFORMATION SCENT SCORES 
CogTool-Explorer 1.0 and earlier versions required many file manipulation and software coding 

steps to setup the model. Prior to integration with CogTool, the modeler had to manually start up a 

LISP session, load the ACT-R architecture, and load three LISP files, one with the source code for the 

user model (region U in Figure 9), the second with the source code for the device model (region D in 

Figure 9), and the third with the infoscent scores of all possible pairs of goal and link texts that the 

user model could encounter in the device model. These infoscent scores were generated by 

manually submitting the goal and link texts to AutoCWW and then copying, from the Excel files that 

AutoCWW returns, the LSA cosine value for each goal-link pair into the third LISP file. 

In CogTool-Explorer 1.2, the manual process of submitting texts to AutoCWW, retrieving the LSA 

cosine values and creating the third LISP file, which was laborious and error prone, has been 

automated (upper left of Figure 9). After the UI mockup has been imported or created, the modeler 

can select the “Generate Dictionary” menu item from a data cell at the intersection of a Task 

Description (the goal text) and a UI mockup in CogTool’s Project Window (Figure 46). This will 

bring up a dialog box to specify the source of the infoscent scores to use and its related parameters. 

For example, if LSA is selected, one can select the appropriate LSA semantic space (corpus) to best 

match the demographics of the type of users the modeler wants predictions for. The modeler can 

change the standard elaboration settings from the default values of 50 and 0.5 (as described in 

Section 4.2.1.3) in the LSA URL field if desired. Clicking on “OK” will start a separate processing 

thread that, for each widget or group in the UI mockup, pairs its Displayed Label and textual-cue 

with the goal text and then submits the two pairs to AutoCWW to compute their LSA cosines. 
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Figure 46: Select “Generate Dictionary” from the cell at the intersection of a Task 
Description and a UI mockup to generate infoscent scores for every Displayed Label and 
textual-cue in the UI design. The modeler can inspect and modify parameters and 
infoscent scores using the Dictionary Viewer window (bottom of Figure). For example, the 
highlighted row in the Viewer has its cosine parameter changed from 0.5 to 1.5 to disable 
further elaboration. 
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After all the LSA cosine values have been retrieved from AutoCWW, the values are shown in the 

Dictionary Viewer, which the modeler can also get to by selecting the “Edit Dictionary” menu item. 

The Dictionary Viewer provides a way for the modeler to inspect the infoscent scores, change the 

parameters for computing the scores, and even change to a different source of infoscent scores, 

including manual entry of scores by the modeler. For example in Figure 46, the selected row in the 

Dictionary Viewer is for the textual-cue of the Performing Arts group. Since the textual-cue of the 

group is already its elaboration as described in Section 4.3.2.1, it should not further undergo the 

standard elaboration performed by AutoCWW, thus, the LSA URL field for the textual-cue of the 

group is edited to use a minimum cosine value of 1.5, which has the effect of disabling the standard 

elaboration performed by AutoCWW. 

Appendix A-4 presents a design of how the “Generate Dictionary” step could be further integrated 

into the setup of model runs 

4.3.4 SETUP OF MODEL RUNS 
CogTool-Explorer 1.0 and earlier versions required many file manipulation and software coding 

steps to run the model. Prior to integration with CogTool, the modeler had to edit LISP source code 

files to specify the information required for each task: the text of the task goal, the name of the 

frame to start exploration from, and the name of the frame which indicates a successful model run. 

After entering the information for one or more tasks, the modeler would edit the LISP source code 

to specify the number of model runs to do for each task and the duration to run the model for 

before the run is considered a failure. After all these edits, the modeler had to manually start up a 

LISP session, load the ACT-R architecture and the three LISP files for the user model (region U in 

Figure 9), the device model (region D in Figure 9) and the infoscent scores into the LISP session, 

and then issue a command on the command line to start the model runs. 

In CogTool-Explorer 1.2, the manual editing of LISP source code files, which was laborious and 

error prone, has been replaced with a new dialog box inside CogTool (upper right of Figure 9). After 

the UI mockup has been imported or created, and the infoscent scores retrieved, the modeler can 

setup model runs by selecting the “Recompute Script”14 menu item from a cell at the intersection of 

a Task Description (the goal text) and a UI mockup in CogTool’s Project Window (Figure 47). This 

will bring up a dialog box to specify the number of model runs to do, the value for the model’s k 

parameter (defaults to 600; see Section 4.1.5), the frame to start exploration from, and the frame or 

frames that indicates a successful model run. Clicking on “OK” will automatically start a LISP 

session, load the ACT-R architecture and the three LISP files for the user model, the device model 

and the infoscent scores into the LISP session, and issue a command to the LISP session to run the 

model for the specified number of runs. On completion, each model run will be listed in CogTool’s 

Project Window. 

Appendices A-1 to A-5 present a design for the setup of CogTool-Explorer model runs. 

                                                             
14 “Recompute Script” is a menu label carried over from CogTool. A more appropriate and descriptive menu 

label for CogTool-Explorer is presented in Appendix A-1. 
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Figure 47: Select “Recompute Script” from the cell at the intersection of a Task 
Description and a UI mockup to bring up the dialog box to set up model runs, including 
the number of runs to do, parameter values such as k (“Eagerness”), the frame to start 
exploration from, and the frame or frames that indicate a successful model run. Each 
model run will be listed in CogTool’s Project Window and can be further inspected in 
CogTool’s Script Step Window. 
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4.3.5 PRESENTATION OF MODEL RUNS 
In all versions of CogTool-Explorer, the model productions associated with the two or three 

possible actions the model can take (read another link, select best link so far, or go back) will 

invoke additional LISP code each time the model takes an action during a model run, to write a 

record of the action taken to an external log file. Like most ACT-R models that use default ACT-R 

architecture settings, CogTool-Explorer also outputs a trace of production firings during a model 

run. Although it is possible to parse the ACT-R trace to extract the sequence of model actions, it is 

easier to record the actions in the log file as the model takes them. The modeler would then load the 

log file into a statistical software package like JMP or spreadsheet software like EXCEL to analyze, 

graph and compare the model runs to human data. In this dissertation, I wrote additional Python 

scripts (Appendix D) to further process the log file to tabulate the various task performance 

measures over multiple model runs for each task, before using JMP and EXCEL to analyze, graph 

and compare the model runs to participant data. 

In CogTool-Explorer 1.0 and earlier versions, prior to integration with CogTool, these model runs 

do not appear inside CogTool, thus, the modeler is unable to utilize existing CogTool’s features to 

inspect CogTool-Explorer model runs. In CogTool-Explorer 1.2, model runs are set up and executed 

from inside CogTool as described in the previous section. CogTool already knows how to parse an 

ACT-R trace to generate visualizations of a model run, thus, we made each CogTool-Explorer model 

run appear in CogTool’s Project Window so that the modeler can inspect each model run in 

CogTool’s Script Step Window (bottom of Figure 47) to see exactly that the model did in that 

particular run. 

4.3.6 ANOTHER USAGE EXAMPLE OF THE MODELING TOOL 
The integration of the CogTool-Explorer model into CogTool, described in Sections 4.3.1 to 4.3.5, 

made it easy to set up and run CogTool-Explorer models on the text-based webpage layouts used in 

this dissertation. Over the course of this integration work, CogTool-Explorer was also used to model 

a completely different task in a radically different UI layout (John et al., 2009), that of entering an 

aircraft’s landing speed using the Control Display Unit in a Boeing 777’s cockpit (Figure 48).  John et 

al. successfully used CogTool-Explorer to investigate what new theory, cognitive mechanisms and 

domain knowledge may be necessary to include in a general model of flight desk tasks, and at the 

same time demonstrated the use of CogTool-Explorer to model other tasks in a UI layout different 

from the text-based webpage layouts used in this dissertation. 
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Figure 48: Mockup of the Control Display Unit (CDU) of a Boeing 777’s cockpit. An image of 

the CDU was used as the background image of this frame. Button widgets were created over 

the parts of the image where a real button would be and text label widgets were created over 

the parts of the image where textual information would be displayed in the CDU’s display. 

Note that the text string “Initialization Reference position”, which describes the Displayed 

Label “INIT REF”, was entered as part of the Displayed label before the Auxiliary Text field 

was implemented in CogTool-Explorer. Here, the “INIT REF” button is selected (highlighted 

with a gray border, which is standard CogTool behavior) and the Mode Keys group that the 

“INIT REF” button belongs to is highlighted with a red border (which is new in CogTool-

Explorer).  

The main contribution of the John et al. 2009 paper was to demonstrate how fast and easy it was to 

test out different models using CogTool-Explorer (circa 2009). In fact, the full title of the work, as 

presented at the conference, was “Rapid Theory Prototyping: An Example of an Aviation Task OR 

How I explored five theories before breakfast.” Table 15 adapts Table 1 in John et al. (2009) to 

illustrate this point (please refer to John et al., 2009, for details of the domain, task, interface and 

success metrics). The time it took to create each new model, ready to run, is shown in minutes in 

the third column.  
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Table 15: Seven iterations of a model, the changes made in CogTool-Explorer to produce 

each iteration, the time it took to make those changes, and the %Success of the resulting 

model. (Adapted from Table 1, John et. al., 2009)  

Some times are very short, 5 minutes or less, reflecting features in CogTool-Explorer that were 

already implemented in early 2009. For example, iteration i2 changed the retrieval of information 

scent scores (Section 4.3.3) from the default “General_Reading_up_to_1st_year_college (300 

factors)” semantic space to a new semantic space built from instruction manuals that pilots are 

likely to have read, so that the information scent sores would reflect the knowledge of airline pilots 

rather than college students. Switching semantic spaces in CogTool-Explorer involved simply 

selecting another option in a drop-down list (see middle of Figure 46). 

Other changes were more time-consuming, providing design guidance for improving the 

expressibility and efficiency of CogTool-Explorer as a modeling tool. We have made these changes 

in the version of CogTool-Explorer described in this dissertation. For example, i3 in Table 15 took 

180 minutes to elaborate goals and labels and use a work-around to express soft-key labels that 

appear on the screen instead of on the buttons themselves. While groups of widgets could be 

expressed in 2009, not only did their own labels have to be typed in by hand, but all the labels and 

elaborations of the widgets included in the group had to be entered into the group label as well. 

This was not only time consuming but confusing. Now additional elaborations can be typed into the 

Auxiliary Text field and the textual cues for groups are automatically concatenated from the 

contents of the group (Section 4.3.2.1). Furthermore, the workaround in i3 to express the labels of 

soft-keys was replaced and simplified by the Remote Label feature (Section 4.3.2.1). Creating i4 

(Table 15) took 60 minutes because the hierarchical visual search described in Section 4.2.3.1 was 

not yet implemented. In 2009, we used large button widgets to simulate groups and made each of 

these widgets transit to another frame that contained only the individual button widgets that 

belong to that group, thus simulating the group-based exploration process. This step would now 

come for free when specifying groups of widgets (Section 4.3.2), eliminating this entire hour’s work. 

Thus, creating the models in John et al. (2009) would take substantially less time in the current 

CogTool-Explorer than it did in 2009, which itself was touted as extremely fast and easy. 
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4.3.7 FURTHER DESIGN ITERATION OF MODELING TOOL USER-INTERFACE 
While CogTool’s Project Window provides a way for the modeler to manipulate CogTool-Explorer 

model runs, and does it in a way that is consistent with KLM models, the current Project Window 

does not show the settings used to generate a set of CogTool-Explorer model runs. Furthermore, 

while CogTool’s Script Step Window and other existing CogTool visualizations of model runs 

provide a way for the modeler to inspect CogTool-Explorer model runs, they were designed to 

visualize a single model run or to compare between two model runs at a time, but not designed to 

visualize and compare the large sets of model runs (as many as 900 model runs per task for 

convergence in this dissertation) that CogTool-Explorer could generate. Appendices A-5 to A-18 

presents a design for the Project Window, to show a set of CogTool-Explorer model runs and the 

settings used to generate it. Appendices B-1 to B-6 presents a design for visualizing a set of 

CogTool-Explorer model runs and for comparing a set of CogTool-Explorer model runs to another 

model run or a KLM model, for example, a KLM model of skilled execution in the same task. 

Although the UI for CogTool-Explorer will inevitably need to evolve as more people use it, just as 

the UI for CogTool has changed over the years, the work already done to integrate CogTool-

Explorer into CogTool is the first step that has enabled a few researchers other than myself to use 

CogTool-Explorer. The design work presented in Appendices A and B builds on our experiences so 

far, and represents a second design iteration toward making CogTool-Explorer into a practical tool 

for UI design and evaluation. 
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5 CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK 
Modeling research and tool development for predicting goal-directed user exploration in HCI has a 

rich history spanning more than two decades before CogTool-Explorer. Building on these prior 

works, this dissertation identified and focused on two modeling research gaps that a model of goal-

directed user exploration must take into consideration to make accurate predictions of likely user 

behavior: the layout position and the grouping of selectable options in the UI layout. This 

dissertation also identified the lack of models that were further implemented as modeling tools, for 

practitioners to use alongside user testing and other HCI methods when designing and evaluating 

UIs. The thesis of this dissertation is: 

A modeling tool for goal-directed user exploration of user-interfaces, that considers 

the information scent, the visual search process, and the layout and grouping of 

options in the user-interface in concert, can make more accurate predictions of user 

exploration compared to tools that do not. 

5.1 CONTRIBUTIONS 
The key contribution of this dissertation to the field of HCI is the new CogTool-Explorer model of 

goal-directed user exploration that considers the layout position and the grouping of options in the 

UI in concert with a serial evaluation visual search process and information scent. The numerous 

tests in this dissertation show that predictions from CogTool-Explorer match participant data 

better than alternative models that do not consider layout position and grouping in the UI layout.  

This dissertation also contributes to the field of HCI an enhancement to an existing modeling tool, 

CogTool. CogTool has great success in modeling skilled user task performance (John, 2010). By 

integrating the CogTool-Explorer model into CogTool and extending the existing CogTool with new 

menu options, dialogs and supporting modules, it is now possible to model and generate 

predictions of both skilled execution and novice exploration by users in a HCI task, all from the 

direct-manipulation UI of CogTool (Section 4.3). 

While the above performance and utility of CogTool-Explorer is a step forward for HCI research, 

there are limitations to this dissertation work. The rest of this section will discuss these limitations 

and motivate future work. 

5.2 VERIFICATION AT THE MOUSE-CLICK LEVEL 
A limitation of this dissertation is that CogTool-Explorer 1.2 is currently verified only at the mouse-

click level. Since layout and grouping in the UI are the main contributions of CogTool-Explorer 1.2, 

mouse-clicks are an indirect measure of the effects of these UI design elements. Unfortunately, the 

AutoCWW experiments lacked eye-tracking data, which would be a more direct measure of the 

location and sequence of eye fixations as participants perform the task, and can be used to develop 

and test CogTool-Explorer. In particular, as mentioned in Sections 4.2.2.4 and 4.2.3.3, the 

availability of eye-tracking data would have make it possible to compare between the model’s and 

participants’ go-back behavior from groups in the half-flatten and multi-group layouts, because go-

back actions in these layouts are eye movements. Also, as mentioned in Section 4.2.1.6.1, eye-

tracking data would provide insight into how top-down knowledge, like looking for the target link 
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at its expected location in the alphabetical list of links on a 3rd-level page, would direct exploration 

behavior. Lastly, as mentioned in Sections 4.2.2.2 and 4.2.3.1, eye-tracking data could provide 

insight into how people would look at and relate a heading to its group, and improve CogTool-

Explorer in this aspect. 

As explained in Section 4.2.1, I have chosen to work with the existing experiments and available 

participant data because the sequence of UI layouts (two-column, multi-page, half-flatten and then 

multi-group layout) used in this dissertation to develop and test CogTool-Explorer allowed some 

inference on the serial evaluation visual search process that takes place in the exploration tasks. 

However, the lack of eye-tracking data means that CogTool-Explorer does not and cannot claim to 

model and predict human behavior at this level of detail. 

Therefore for future work, if resources are available, eye-tracking data should be collected to 

compare against model behavior and improve the sophistication of eye movement in CogTool-

Explorer. Since the order in which options are looked at directly affects the selections made during 

exploration, a more sophisticated theory of eye movement would improve CogTool-Explorer’s 

predictions of higher level task performance measures like %Success and MeanClicksToSuccess. 

5.3 LAYOUT-SPECIFIC KNOWLEDGE 
Another limitation is the specific knowledge about the half-flatten and multi-group layouts, as 

described in Sections 4.2.2.2 and 4.2.3.1, that has to be implemented in CogTool-Explorer 1.2 to 

enable the user model to understand how these layouts “work” as modeled in the UI mockup and 

behave appropriately. For example, in the half-flatten layout, the user model needs to know that the 

top-level and 2nd-level pages are actually continuations of one another and thus should continue 

exploration within the group of 2nd-level links whenever it transits to a 2nd-level page. Another 

example, in both the half-flatten and multi-group layouts, the user model needs to know the 

relationship between a group and its heading so that the user model would not treat them as two 

separate options and mistakenly select a heading link after just going back from its group. 

In CogTool-Explorer 1.2, the above specific knowledge is implemented as individual “add-ons” and 

can be switched on or off. In fact, if all of the specific knowledge is switched off, and we run 

CogTool-Explorer 1.2 on the multi-page layout, it is exactly the same as running CogTool-Explorer 

1.1 on the multi-page layout, because the generic knowledge about groups and group-based 

hierarchical exploration in CogTool-Explorer 1.2 will simply not kick in when the layout does not 

have groups. However, the need for such layout-specific knowledge in CogTool-Explorer 1.2 means 

that the model is currently less generic than desired; the model will still run with all of the layout-

specific knowledge switched off but its behavior may be wrong. 

A related limitation of CogTool-Explorer 1.2 is that the model currently lacks the knowledge to 

behave appropriately in commonly used layout schemas, such as Web links presented in 

alphabetical order or navigation links presented separately from the main content. It is reasonable 

to expect people would make use of these layouts, when present in the user-interface, to be more 

efficient during exploration, for example, knowing to start at the bottom of the alphabetical list 

when looking for something that starts with a "w" as opposed to a "b", or knowing to visually search 
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the navigation links first. For the CogTool-Explorer model to behave similarly, such layout specific 

knowledge would have to be added to the model. 

A proposed solution for future work lies concurrently in a few places: (1) add to the current UI 

mockup facilities in CogTool to express these special relationships, like two frames are 

continuations of each another, that some widgets in these two frames are actually the same widget, 

or some widgets and/or groups have additional roles or properties like alphabetical ordering (2) 

update the device model with data structures to represent these relationships, and (3) update the 

user model to recognize and make use of these relationships. Identifying the common 

denominators in the specific knowledge and implementing them in a generic way will be the 

research challenge. 

5.4 TASKS, PARAMETERS AND GENERALITY 
Another limitation is that CogTool-Explorer is developed and tested on a set of tasks, UI layouts and 

participant data from the AutoCWW experiments. Although the tasks and UI layouts were based on 

an actual encyclopedia website15 (Figure 15), they are clearly not representative of the much wider 

range of website and webpage designs on the Web, and are further removed from the variety and 

richness of the graphical user-interface in devices ranging from desktop computers to handheld 

devices to aircraft cockpits. 

I have chosen to work with the tasks, UI layouts and participant data from the AutoCWW 

experiments because they are suitable for investigating the factors (infoscent, layout position and 

grouping) that this dissertation focuses on, without confounding factors like graphics or animation. 

Using the AutoCWW experiments also facilitates the comparison between CogTool-Explorer and 

AutoCWW. However, this means that within the scope of this dissertation, CogTool-Explorer has 

not been tested on other tasks and UI layouts and its exploration process may not work as well. 

CogTool-Explorer also lacks the procedural knowledge for interacting with more complex widgets 

like pull-down lists and groups of checkboxes, which are already available in CogTool and are 

common in graphical user-interfaces. Furthermore, although the current model parameters values 

for noise, k, etc, work well, a full exploration of the parameter space would require computing 

resources beyond the scope of this dissertation. So, CogTool-Explorer still has some way to go 

before we can use it to model any UI layout and rely on its predictions in general. 

The good news is that CogTool-Explorer has been successfully used to model other tasks in a 

different UI layout (John et al., 2009), that of a Control Display Unit in a Boeing 777’s cockpit. For 

future work, CogTool-Explorer should be tested on other tasks and UI layouts and compared to new 

participant data. Advanced computational methods like Adaptive Mesh Refinement (Best et al., 

2009) could also be used to do a full systematic exploration of the model parameter space. 

5.5 INFORMATION SCENT SCORES 
Another limitation is that CogTool-Explorer 1.2 has only been tested using infoscent scores derived 

from LSA cosine values computed with reference to the college-level TASA corpus (from 

                                                             
15 http://encarta.msn.com (discontinued on October 31, 2009) 
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Touchstone Applied Science Associates, Inc.). While this is adequate and appropriate for the tasks, 

UI layouts and participant data used this dissertation, as AutoCWW also used the same, the TASA 

corpus may no longer be suitable for more contemporary tasks. 

Imagine using CogTool-Explorer to model a user looking to access online videos on a smart-phone. 

We would expect an average computer user in the year 2011 to see a link or button labeled 

“YouTube” as attractive. However, “YouTube” does not even appear in the TASA corpus and would 

result in a null LSA cosine value. For CogTool-Explorer to become a practical tool for UI design and 

evaluation, it’s sources of information scent scores have to keep in step with the real world. Future 

work could look into providing access to LSA semantic spaces based on other corpuses, or compute 

infoscent scores using PMI values based on search queries to large online document repositories 

like Wikipedia or even the Web. 

5.6 OTHER FACTORS 
There are factors listed in Table 1, namely goal formation, learning from exploration and 

knowledge about UI actions, and other factors such as cost-benefits of competing options and 

switching between multiple goals and sub-goals, that affect user exploration but are outside the 

scope of this dissertation. This does not mean that these factors are less important, but can be 

topics for future work. 

Ultimately, we would want a model to predict the range of human behavior that would be observed 

in the real world when using an interactive system, on metrics such as number of errors and where 

they occur, performance time, learning time and what was learned, effects of fatigue, environmental 

factors, or emotion on performance, and even levels of satisfaction or joy when using the system. 

No computational model is up to that task at this writing. 

By implementing CogTool-Explorer as a mechanistic process model in a widely established 

cognitive architecture like ACT-R (the same approach shared by Brumby and Howes’ model (2004), 

SNIF-ACT 1.0, SNIF-ACT 2.0 and DOI-ACT), CogTool-Explorer has the longer-term potential of 

providing a research platform to add other factors that influence user exploration in an integrated 

way constrained by a cognitive architecture. As these factors interact in a mechanistic process 

model, interesting and potentially counterintuitive predictions have an opportunity to emerge. 
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APPENDICES 
Appendices A and B present the design outcomes from a series of design meetings that I conducted, 

between January to March 2010, with the CogTool software development team and Dr. Rachel 

Bellamy, a research collaborator from IBM’s T. J. Watson Research Center. In these meetings, I 

proposed new designs and led the discussion, critique and redesign of various menus, dialogs and 

views that pertain to the integration of CogTool-Explorer into CogTool. While these design 

outcomes are not implemented into CogTool-Explorer in this dissertation, they represent a second 

design iteration toward making CogTool-Explorer into a practical tool for UI design and evaluation. 

Appendix C contains the source code of the CogTool-Explorer 1.2 model. 

Appendix D contains the source code of the Python script used to process the log file generated by 

the CogTool-Explorer 1.2 model. 
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A-1: COGTOOL PROJECT WINDOW 

 

Existing CogTool UI 
The figure above shows CogTool’s Project Window. On start up, CogTool automatically creates a 

new CogTool project and a default “Task 1” in the Project Window. In this usage scenario, the 

modeler creates a “ClassicCD.com” website mockup. The modeler will rename “Task 1” with a more 

descriptive name in A-10. 

UI Design for CogTool-Explorer 
The modeler wants to model and get predictions of how a novice user might explore this website to 

accomplish a task. To do this, the modeler selects the “Predict Novice Exploration” menu item from 

the cell at the intersection of “Task 1” and “ClassicCD.com”, as shown in the figure above. 



 

 

127  

127 

A-2: PREDICT NOVICE EXPLORATION DIALOG 

 

UI Design for CogTool-Explorer 
On selecting the “Predict Novice Exploration” menu item, the above dialog box appears for the 

modeler to set up CogTool-Explorer model runs. If this is the first time the dialog box appears for a 

particular task-mockup cell, or if the dialog box had appeared previously but no settings were 

changed and saved, the dialog box will have the default settings as shown in the figure above. The 

“Save Settings and Generate Predictions” and “Save Settings” buttons will become enabled after 

both the “Task Description” and “Target Frame(s)” fields are edited by the modeler. 
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A-3: PREDICT NOVICE EXPLORATION DIALOG: TASK TAB 

 

UI Design for CogTool-Explorer 
In this usage scenario, the modeler edits the “Task Description” field and specifies one frame in the 

UI mockup as a Target Frame. The modeler changes the “Maximum Time for Exploration” to 60 

seconds and the “Number of Prediction Trials” to generate to 3, as shown in the figure above. 



 

 

129  

129 

A-4: PREDICT NOVICE EXPLORATION DIALOG: SIMULATED USER TAB 

 

UI Design for CogTool-Explorer 
The modeler next switches to the “Simulated User” tab as shown in the figure above. In the 

“Knowledge of Words” field, the modeler can select the appropriate LSA semantic space (corpus) to 

best match the demographics of the type of users the modeler wants predictions for. In the 

“Eagerness to Choose” field, the modeler can change parameter k in CogTool-Explorer (Section 

4.1.5). 

The “Save Settings and Generate Predictions” button will save the settings in this dialog box for this 

particular task-mockup cell and run CogTool-Explorer using these settings. The “Save Settings” 

button will save the settings in this dialog box for this particular task-mockup cell but will not run 

CogTool-Explorer. In both cases, the next time the “Predict Novice Exploration” dialog box appears 

for this particular task-mockup cell, the last saved settings will populate the fields in the dialog box. 

In this usage scenario, the modeler increases the “Eagerness to Choose” to High and clicks on the 

“Save Settings and Generate Predictions” button. 
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A-5: COGTOOL-EXPLORER RESULTS AND SETTINGS 

 

UI Design for CogTool-Explorer 
The figure above shows what the Project Window looks like after the modeler clicked on the "Save 

Settings and Generate Predictions" button. The text “(by exploration)" is automatically appended to 

the original “Task 1” name to indicate that the results under this task came from running CogTool-

Explorer (note that the modeler is free to rename the task, which the modeler does in A-10). The 

task is automatically expanded and the first six rows show the settings used to generate this set of 

CogTool-Explorer model runs. This is followed by the collection of the individual model runs, 

initially collapsed. The last row is an editable “Comments” field that the modeler can use to enter 

notes about the task. 
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A-6: COGTOOL-EXPLORER MODEL RUNS 

 

UI Design for CogTool-Explorer 
To see the individual model runs, the modeler clicks on the expand/collapse icon next to 

“Exploration Trials”. The figure above shows the fully expanded view of a set of CogTool-Explorer 

model runs in the Project Window. 

A design goal for CogTool-Explorer is to reuse how CogTool presents KLM models using tasks and 

task groups in the Project Window, and extend the presentation style to show a set of CogTool-

Explorer model runs and the settings used to generate them. For example, the collection of 

individual CogTool-Explorer model runs in “Exploration Trials” look just like a CogTool task group, 

but unlike a CogTool task group (A-8 to A-11 use a CogTool task group), its individual model runs 

are not editable, no model runs can be removed from the collection, and no model runs can be 

added to the collection unless they use the exact same settings. These restrictions are necessary to 

keep the collection of model runs consistent with its settings. 



 
132 

A-7: COGTOOL-EXPLORER COLLAPSED VIEW 

 

UI Design for CogTool-Explorer 
The modeler clicks on the expand/collapse icon next to “Task 1 (by Exploration)” to collapse the 

task to take up just one row in the Project Window, as shown in the figure above. 
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A-8: COGTOOL TASK GROUP 

 

Existing CogTool UI 
Using existing features in CogTool, the modeler starts to build up a more complex task in the “Buy 

music with my credit card” task group, as shown in the figure above. Inside this task group, the 

modeler creates a “Find album by Enya” KLM model and another task group named “Make 

Payment”. Inside the “Make Payment” task group, the modeler creates two KLM models, “Using 

Credit Card” and “Using Paypal”. 

The “Buy music with my credit card” task group models a task with two sub-tasks: find a music 

album by Enya and then make payment. The “Make Payment” task group is set to show the mean 

task duration of its two KLM models, “Using Credit Card” and “Using Paypal”, thus modeling that 

users of ClassicCD.com would pay with a credit card half the time and the other half of the time pay 

with Paypal. The “Buy music with my credit card” task group is set to show the sum of the durations 

of the “Find album by Enya” task and the “Make Payment” task group, thus modeling that these two 

sub-tasks happen sequentially. 
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A-9: COGTOOL TASK GROUP WITH COGTOOL-EXPLORER TASK 

 

Existing CogTool UI 
Using existing interaction techniques in CogTool, the modeler drags and drops “Task 1 (by 

Exploration)” into the “Buy music with my credit card” task group, as shown in the figure above. 

Note that the “Buy music with my credit card” task group updates its sum of task durations 

accordingly. 
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A-10: RENAME COGTOOL-EXPLORER TASK 

 

Existing CogTool UI 
The modeler renames “Task 1 (by Exploration)” to “Find album by ColdPlay” as shown in the figure 

above, thus, builds up the “Buy music with my credit card” task group to model a user of 

ClassicCD.com finding two music albums and then making payment. 
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A-11: COGTOOL-EXPLORER EXPANDED VIEW 

 

UI Design for CogTool-Explorer 
The modeler clicks on the expand/collapse icon next to “Find album by ColdPlay” to look at the 

settings again, as shown in the figure above 

The “Buy music with my credit card” task group now models a task with three sub-tasks: find a 

music album by Enya, find a music album by ColdPlay, and then make payment. “Find album by 

Enya” models a user of ClassicCD.com following a particular path through the UI mockup, that is, 

the user knows exactly what to do. “Find album by ColdPlay” models a user who does not know 

exactly what to do and has to explore the website, thus, it shows the mean duration of its collection 

of CogTool-Explorer model runs. As explained in A-8, “Make Payment” models users of 

ClassicCD.com would pay using a credit card half the time and the other half of the time pay using 

Paypal. 
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A-12: PREDICT NOVICE EXPLORATION FROM EXISTING KLM MODEL 

 

UI Design for CogTool-Explorer 
The modeler wonders what if some users do not know where the Enya album is in ClassicCD.com? 

To proceed, the modeler selects the “Predict Novice Exploration” menu item from the cell at the 

intersection of “Find album by Enya” and “ClassicCD.com”, as shown in the figure above. This brings 

up the “Predict Novice Exploration” dialog box, shown in A-2 to A-4, for the modeler to set up 

CogTool-Explorer model runs. 
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A-13: AUTOMATED CREATION OF TASK GROUP 

 

UI Design for CogTool-Explorer 
The figure above shows what the Project Window looks like after the modeler clicked on the "Save 

Settings and Generate Predictions" button in the “Predict Novice Exploration” dialog box. Like in A-

5, the text “(by exploration)" is automatically appended to the original “Find album by Enya” name 

to indicate that the results shown under this task came from running CogTool-Explorer. The task is 

automatically expanded and the first six rows show the settings used to generate this set of 

CogTool-Explorer model runs. This is followed by the collection of the individual model runs, 

initially collapsed. The last row is an editable “Comments” field that the modeler can use to enter 

notes about the task. 

Unlike in A-5 where "Predict Novice Exploration" was selected from an empty cell, here in A-12, 

"Predict Novice Exploration" was selected from a cell that holds the “25s” task duration result from 

the "Find album by Enya" KLM model, thus, a new "Find album by Enya" task group is automatically 

created and consists of  the original "Find album by Enya" KLM model and the new "Find album by 

Enya (by Exploration)", as shown in the above figure. 

The “Find album by Enya” task group is also automatically set to show the mean task duration, thus 

modeling that half of the users of ClassicCD.com know where the Enya album is in ClassicCD.com 

while the other half do not and need to explore ClassicCD.com. 
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A-14: PREDICT NOVICE EXPLORATION FROM EXISTING COGTOOL-EXPLORER TASK 

 

UI Design for CogTool-Explorer 
Between A-12 and A-13, the modeler selected “First Year College” in the “Knowledge of Words” 

field. Now, the modeler wonders what if some users of ClassicCD.com have a 12th grade vocabulary? 

To proceed, the modeler selects the “Predict Novice Exploration” menu item from the cell at the 

intersection of “Find album by Enya (by Exploration)” and “ClassicCD.com”, as shown in the figure 

above. This brings up the “Predict Novice Exploration” dialog box, shown in A-2 to A-4, for the 

modeler to set up CogTool-Explorer model runs. Note that because the modeler had previously 

changed and saved settings for this particular cell between A-12 and A-13, the saved settings will 

now pre-populate the fields in the “Predict Novice Exploration” dialog box. The modeler then 

switches to the “Simulated User” tab, shown in A-4, selects “12th Grade” in the “Knowledge of 

Words” field, and clicks on the “Save Settings and Generate Predictions” button. 
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A-15: COGTOOL-EXPLORER RESULTS AND SETTINGS 

 

UI Design for CogTool-Explorer 
The figure above shows what the Project Window looks like after the modeler clicked on the "Save 

Settings and Generate Predictions" button in the “Predict Novice Exploration” dialog box. Since the 

settings were changed, a new set of CogTool-Explorer model runs is created in the Project Window, 

and because the task name “Find album by Enya (by exploration)” already exists in the “Find album 

by Enya” task group, CogTool automatically appends the text “(2)" to the original “Find album by 

Enya (by exploration)” name for this new set of CogTool-Explorer model runs. 

Now, the “Find album by Enya” task group models a third of the users of ClassicCD.com know where 

the Enya album is in ClassicCD.com while the other two-thirds do not and need to explore 

ClassicCD.com, with half of them having a first year college vocabulary and the other half having a 

12th grade vocabulary. The modeler makes a note about this in the “Comments” area for the “Find 

album by Enya” task group, as shown in the figure above. 
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A-16: CHANGE RESULT SUMMARY FORMAT FOR COGTOOL-EXPLORER TASK 

 

UI Design for CogTool-Explorer 
The above figure shows what the Project Window looks like after the modeler collapses "Find 

album by Enya (by Exploration) (2)" and expands "Find album by ColdPlay". 

The modeler wants to select a different result summary for "Find album by ColdPlay". To proceed, 

the modeler selects "Show Percent Success" from the cell "Mean: 40 s". 



 
142 

A-17: PERCENT SUCCESS OF COGTOOL-EXPLORER TASK 

 

UI Design for CogTool-Explorer 
The figure above shows what the Project Window looks like after the modeler select "Show Percent 

Success" for "Find album by ColdPlay". The result summary shows that two-thirds of the model 

runs were successful, that is, they reached the target frame before the maximum time for 

exploration is up, whereas the rest of the model runs failed to reach the target frame before the 

maximum time for exploration is up. The format for the individual model run result is also updated 

to either “Success” or “Failure” to match the format of the result summary. 
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A-18: COGTOOL-EXPLORER EXPANDED VIEW AND COMMENTS FIELDS 

 

UI Design for CogTool-Explorer 
The figure above shows what the Project Window looks like after the modeler expands the KLM 

models “Find album by Enya”, “User Credit Card” and “Using Paypal”, and enters notes in their 

“Comments” rows.  
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B-1: VISUALIZATION OF COGTOOL-EXPLORER MODEL RUNS 

 

UI Design for CogTool-Explorer 
B-1 to B-7 show a design for visualizing a set of CogTool-Explorer model runs. The modeler would 

get to this visualization by selecting “Visualize Prediction” from the results cell of a set of CogTool-

Explorer model runs (see A-16 for an example). 

The visualization reuses CogTool’s Design Window (Figure 41b) to show the frames and transitions 

in a UI mockup, but renders the UI mockup in grayscale16 and fades out the frames that were never 

visited in this set of CogTool-Explorer model runs, as shown in the figure above. To show the 

widgets that were selected and the transitions that were followed in this set of CogTool-Explorer 

model runs, the visualization overlays gray rectangles over widgets that were selected and gray 

block arrows over transitions that were followed, with the relative widths of the block arrows 

showing the number of times each widget was selected. 

The visualization defaults to highlighting all the widgets that were selected in this set of CogTool-

Explorer model runs. 

                                                             
16 The figures in B-1 to B-7 are created by editing screen captures of the existing CogTool’s Design Window. 

The transitions represented by thin line arrows should be faded out in the figures, but due to constraints in 

image editing, segments of these thin line arrows are not faded when they overlap non-faded frames. 
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B-2: VISUALIZATION OF COGTOOL-EXPLORER MODEL RUNS: FILTERED #1 

 

UI Design for CogTool-Explorer 
To filter the highlighting of widgets that were selected in this set of CogTool-Explorer model runs, 

the modeler can use the range slider as shown in the figure above. In this example, the modeler 

wants to focus on the widgets that were selected more often, and moves the left slider control to 

highlight only those widgets that were selected at least 8 times in this set of CogTool-Explorer 

model runs. 
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B-3: VISUALIZATION OF COGTOOL-EXPLORER MODEL RUNS: FILTERED #2 

 

UI Design for CogTool-Explorer 
The range slider also allows the specification of an upper limit on the widgets to highlight. In this 

example, the modeler moves the right slider control to highlight only those widgets that were 

selected 30 times or less in this set of CogTool-Explorer model runs, as shown in the figure above. 
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B-4: COMPARISON OF COGTOOL-EXPLORER MODEL RUNS 

 

UI Design for CogTool-Explorer 
To compare this set of CogTool-Explorer model runs to a particular model run or a KLM model from 

the same UI mockup, the modeler can check the “Skilled Execution” box and select a particular 

model run or a KLM model to show the path taken by that model in the visualization. 

In this example, the modeler first adjusts the range sliders for “Novice Exploration” to highlight all 

widgets that were selected in this set of CogTool-Explorer model runs. The modeler next checks the 

“Skilled Execution” box and selects a KLM model from the same UI mockup (selection dialog not 

shown in the figure above). The visualization then highlights in color the path taken by the selected 

model as shown in the figure above. 
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B-5: COMPARISON OF COGTOOL-EXPLORER MODEL RUNS: FILTERED #1 

 

UI Design for CogTool-Explorer 
The range slider for “Skilled Execution” allows the modeler to selectively highlight only a segment 

of the path taken by the selected model. In this example, the modeler moves the right slider control 

to highlight only the widget that was selected in the first step of the path, as shown in the figure 

above. 
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B-6: COMPARISON OF COGTOOL-EXPLORER MODEL RUNS: FILTERED #2 

 

UI Design for CogTool-Explorer 
In the figure above, the modeler moves the range slider bar to the center, to highlight only the 

widget that was selected in the second step of the path. 
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C: SOURCE CODE OF COGTOOL-EXPLORER 1.2 
;;; Model refinements 

(defparameter *modified-mean-prev-page* t) 

(defparameter *modified-mean-current-page* t) 

(defparameter *update_confidence* t) 

(defparameter *use-back-button* t) ;;; t means model will look for a Back button and click on it to go-back, nil means model can 

"magically" go back to the previous frame it came from. 

 

(defparameter *mixed-visual-search* nil) ;;; t means model may choose to focus next on the nearest group instead of doing a strict 

header-first process 

(defparameter *non-header-process-conf-scale* 3) ;;; numeric value only applies if  *mixed-visual-search* is t 

 

(defparameter *use-back-button-history-in-half-flatten-layout* t) ;;; in the half-flatten layout, back buttons have no transitions, so 

have to use exploration history when set to t 

(defparameter *recognize-equivalent-links-in-half-flatten-layout* t) 

(defparameter *handle-groups-in-half-flatten-layout* t) 

(setf *2nd-level-pages* '("Art, Language & Literature" "Life Science" "History" "Geography" "Religion & Philosophy" "Physical Science 

& Technology" "Social Science" "Sports, Hobbies, & Pets" "Performing Arts")) 

 

(defparameter *consider-familarity* nil) 

(defparameter *modified-previously-chosen-widgets* nil) 

(defparameter *infoscent_variabilty_between_runs* nil) 

(defparameter *second-best-prev-page* nil) 

 

(defparameter *corrected-k-update* t) 

 

;;; Model parameters 

(defparameter *similarity-scale-factor* 50) 

(defparameter *infoscent-noise* 1) 

(defparameter *go-back-cost* 1) 

 

;;; Task parameters 

(defparameter *CT-E_timeout* 130) 

 

;;; Model log file 

(defparameter *file* nil) 

 

(defparameter *model-run* 0) 

 

(defparameter *CT-E-Debug* nil) 

 

(defun reset-trial-parameters () ; parameters to be reset at the start of each new trial or run of the model 

 (setf *widget-infoscent-stack* nil) ; list of lists of infoscent values seen on previous pages or frames 

 (setf *history* nil) ; enable go-back to previous page without back button on page 

 (setf *current-group* nil) ; for ease of printing to model log file 

 (setf *step-index* 1) 

 (set-visloc-default isa cogtool-visual-location 

  member-of-group nil 

    - display-label  "Back" 

  :attended   new 



 

 

 

151 

  :nearest   current) 

 (if *infoscent_variabilty_between_runs* (setf *assessed-infoscent* (make-hash-table :test #'equalp))) 

) 

 

(defun reset-frame-parameters () ; parameters to be reset at the start of each visit to a page or frame 

 (spp read-another-widget :u 0) 

 (spp choose-best-widget :u 0) 

 (spp go-back :u 0) 

 (setf *widget-infoscent-list* nil) ; list of infoscent values seen on this frame or group 

 (setf *number-widgets-read* 0) 

 (setf *best-widget-scent* 0) 

 (setf *current-widget-scent* 0) 

 (remove-visual-finsts) 

) 

 

(defparameter *overridden-global-parameters* 

 '( 

 :visual-finst-span 100 ;;; "Perfect" visual search memory for each frame 

 :visual-num-finsts 100 ;;; "Perfect" visual search memory for each frame 

 :v t 

 :trace-detail high 

 :act nil 

 :bll 0.5 

 :rt -2 

 :ans 1 

 :ol nil 

 :seed nil ; override the fixed seed value from CogTool-KLM 

 :er t 

 ) 

) 

 

(define-cogtool-model (:start-with-mouse t :timeout *CT-E_timeout* :initial-frame-name *CogTool-Explorer-start-frame*) 

 

(chunk-type search-task 

   goal-text 

   best-cue ;;; holds widget text for facilitating trace output 

   best-loc 

   best-widget ;;; holds widget name for facilitating trace output 

   group 

   state 

) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; (p start) adds the goal chunk ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(p start 

 =goal> 

  isa  klm 

  state   1 

==> 
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 !bind! =goal-text *task-description* 

 

 !eval! (reset-trial-parameters) 

 !eval! (reset-frame-parameters) 

 !eval! (transition *CogTool-Explorer-start-frame* *cogtool-design*) 

 !eval! (if *CT-E-Debug* (print-visicon)) 

  

 +goal> 

  isa  search-task   

  goal-text  =goal-text 

  best-cue  "dummy-text" 

  best-loc  dummy-loc ;;;Will be updated to the first link assessed when model runs. 

  best-widget dummy-widget 

  group  nil 

  state   find 

) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Visual Search Productions ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(p find-unattended-in-frame-group 

 =goal> 

  isa    search-task 

  group   nil 

  state    find 

 

 ?visual-location> 

  buffer   empty 

  

 ?visual> 

  state   free 

==> 

 +visual-location> 

  isa    cogtool-visual-location 

  member-of-group nil 

  remote-label-of  nil ;;; Task specific knowledge to ignore Remote Labels 

    - display-label  "Back" ;;; Task specific knowledge about Back button in browser window  

  :attended   nil 

  :nearest   current 

     

 =goal> 

  state   finding 

) 

 

(p find-unattended-in-group 

 =goal> 

  isa    search-task 

  group   =group 

  state    find 
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 ?visual-location> 

  buffer   empty 

  

 ?visual> 

  state   free 

==> 

 +visual-location> 

  isa    cogtool-visual-location 

  member-of-group =group 

  remote-label-of  nil ;;; Task specific knowledge to ignore Remote Labels 

    - display-label  "Back" ;;; Task specific knowledge about Back button in browser window 

  :attended   nil 

  :nearest   current 

     

 =goal> 

  state   finding 

) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Handle Visual Stuffing or Search Outcomes ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(p stuffed-with-unattended-in-frame-group 

 =goal> 

  isa    search-task 

  group   nil 

  state   find 

   

 =visual-location> 

  isa   cogtool-visual-location 

  remote-label-of  nil ;;; Task specific knowledge to ignore Remote Labels 

    - display-label  "Back" ;;; Task specific knowledge about Back button in browser window 

  member-of-group nil 

  

 ?visual> 

  state   free 

==> 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

 

 +visual> 

  isa   move-attention 

  screen-pos  =visual-location 

  

 =goal> 

  state   read-link 

) 

 

(p stuffed-with-unattended-in-group 

 =goal> 

  isa    search-task 

  group   =group 
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  state   find 

   

 =visual-location> 

  isa   cogtool-visual-location 

  remote-label-of  nil ;;; there Task specific knowledge to ignore Remote Labels 

    - display-label  "Back" ;;; Task specific knowledge about Back button in browser window 

  member-of-group =group 

  

 ?visual> 

  state   free 

==> 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

 

 +visual> 

  isa   move-attention 

  screen-pos  =visual-location 

  

 =goal> 

  state   read-link 

) 

 

(p skip-stuffed-remote-label 

 =goal> 

  isa    search-task 

  state   find 

   

 =visual-location> 

  isa   cogtool-visual-location 

    - remote-label-of  nil  

  

 ?visual> 

  state   free 

==> 

 -visual-location> 

) 

 

(p skip-stuffed-back-button 

 =goal> 

  isa    search-task 

  state   find 

   

 =visual-location> 

  isa   cogtool-visual-location 

  display-label  "Back" ;;; Task specific knowledge about Back button in browser window 

  

 ?visual> 

  state   free 

==> 

 -visual-location> 

) 
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(p skip-stuffed-unattended-in-wrong-group 

 =goal> 

  isa    search-task 

  group   =group 

  state   find 

   

 =visual-location> 

  isa   cogtool-visual-location 

    - member-of-group =group  

  

 ?visual> 

  state   free 

==> 

 -visual-location> 

) 

 

(p skip-stuffed-unattended-in-group 

 =goal> 

  isa    search-task 

  group   nil 

  state   find 

   

 =visual-location> 

  isa   cogtool-visual-location 

    - member-of-group nil  

  

 ?visual> 

  state   free 

==> 

 -visual-location> 

) 

 

(p no-more-unattended 

 =goal> 

  isa   search-task 

    - best-cue  "dummy-text" 

  best-widget  =best-widget 

  state    finding 

    

 ?visual-location> 

  state    error 

==> 

 !bind! =num-links-read (eval *number-widgets-read*) ; for debugging  

 !output! (>>> Choose widget =best-widget after reading =num-links-read links] <<<) ; for debugging 

  

 =goal> 

  state   choose-best-widget 

) 

 

(p no-unselected 

 =goal> 
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  isa   search-task 

  best-cue  "dummy-text" 

  state   finding 

    

 ?visual-location> 

  state   error 

==> 

 !bind! =state (if (= 0 (length *widget-infoscent-stack*)) 'stop 'go-back-to-previous) 

 

 !eval! (if (and *update_confidence* (> (length *widget-infoscent-stack*) 1)) (push 0.01 (first (second *widget-infoscent-

stack*)))) 

  

 =goal> 

  state   =state 

) 

 

(p look-at-unattended 

 =goal> 

  isa   search-task 

  state   finding 

     

 =visual-location> 

  isa   cogtool-visual-location 

    - display-label  "Back" ;;; Task specific knowledge about Back button in browser window 

    

 ?visual> 

  state   free 

==> 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

 

 +visual> 

  isa   move-attention 

  screen-pos  =visual-location 

     

 =goal> 

  state   read-link 

) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Read, check if is a chosen link and assess link ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(p target-link-not-on-this-page 

 =goal> 

  isa   search-task 

  state   read-link 

    

 =visual-location> 

  isa   cogtool-visual-location 

  display-label   "Where the target link should be" 

   



 

 

 

157 

 =visual> 

  isa   visual-object 

  screen-pos  =visual-location 

==> 

 !bind! =state (if (= 0 (length *widget-infoscent-stack*)) 'stop 'go-back-to-previous) 

 

 !eval! (if (and *update_confidence* (> (length *widget-infoscent-stack*) 1)) (push 0.01 (first (second *widget-infoscent-

stack*)))) 

  

 =goal> 

  state   =state 

) 

 

(p read-widget 

 =goal> 

  isa   search-task 

  state   read-link 

   

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

    - display-label  "Where the target link should be" 

  textual-cue  =textual-cue 

  widget-name  =widget-name 

    

 =visual> 

  isa   visual-object 

  screen-pos  =visual-location 

==> 

 !bind! =widget-name (if (and *handle-groups-in-half-flatten-layout* (search "Subordinate in" =widget-name)) 

         (subseq =widget-name 15) 

         (if *recognize-equivalent-links-in-half-flatten-layout* =textual-cue =widget-name)) 

           

 +retrieval> 

  isa    visual-object 

  value   =widget-name 

  status   chosen 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

   

 =visual> ; prevent implicit clearing of the visual buffer to maintain the chunk for modification in production click-mouse 

    

 =goal> 

  state   assess-link 

) 

 

(p widget-was-previously-chosen 

 !eval! (not *modified-previously-chosen-widgets*) 

 

 =goal> 

  isa   search-task 

  state   assess-link 
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 ?retrieval> 

  buffer   full 

==>    

 -visual-location> ; so that find-unattended-* will fire, otherwise stuffed-* will fire over and over again 

 

 -visual> 

 

 =goal> 

  state   find     

) 

 

(p modified-widget-was-previously-chosen 

 !eval! (eval *modified-previously-chosen-widgets*) 

 

 =goal> 

  isa   search-task 

  best-widget  =best-widget 

  state   assess-link 

    

 ?retrieval> 

  buffer   full 

==> 

 !output! (>>> Assessing =best-widget [previously selected] <<<) ; for debugging 

 

 !eval! (if *corrected-k-update* (incf *number-widgets-read*)) 

  

 !eval! (update-prod-parameters 0.01 *best-widget-scent*) 

 

 =goal> 

  state   whats-next 

   

 !bind! =num-widgets-read (if *corrected-k-update* (eval *number-widgets-read*) (incf *number-widgets-read*)) 

 !output! (>>> Best widget after assessing =num-widgets-read widgets is =best-widget <<<) ; for debugging 

) 

 

(p assess-widget 

 =goal> 

  isa   search-task 

  goal-text  =goal-text    

  best-cue  =best-cue 

  best-loc  =best-loc 

  best-widget  =best-widget 

  state   assess-link 

    

 ?retrieval> 

  state   error      

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location  

  textual-cue  =textual-cue 
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  widget-name  =widget-name 

  display-label   =display-label 

   

 =visual>   

  isa   visual-object 

  screen-pos  =visual-location 

==> 

 !bind! =widget-name-or-display-label (if (equalp =display-label "") =widget-name =display-label) 

 !output! (>>> Assessing =widget-name-or-display-label <<<) ; for debugging 

 

 !eval! (if *corrected-k-update* (incf *number-widgets-read*)) 

  

 !bind! =new-best-cue (find-best-cue =goal-text =best-cue =textual-cue :update-prod t) ; compare inforscent values and update 

production utilities 

 !bind! =new-best-loc (if (equalp =new-best-cue =textual-cue) =visual-location =best-loc) ; update visual-location of best link 

 !bind! =new-best-widget (if (equalp =new-best-cue =textual-cue) =widget-name-or-display-label =best-widget) ; update widget-

name of best link 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  

 =visual> 

    

 =goal> 

  best-cue  =new-best-cue 

  best-loc  =new-best-loc 

  best-widget  =new-best-widget 

  state   whats-next 

 

 !bind! =num-links-read (if *corrected-k-update* (eval *number-widgets-read*) (incf *number-widgets-read*)) 

 !output! (>>> Best widget after assessing =num-links-read widgets is =new-best-widget <<<) ; for debugging 

) 

 

(spp assess-widget :at 0.275) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; The 3 competing productions as per SNIF-ACT 2 ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(p read-another-widget 

 =goal> 

  ISA   search-task 

  state   whats-next      

==> 

 -visual-location> ; so that find-unattended-* will fire, otherwise stuffed-* will fire over and over again 

  

 -visual> ;;; is this necessary? 

    

 =goal> 

  state   find 

) 
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(p choose-best-widget 

 =goal>   

  ISA   search-task 

  best-widget  =best-widget 

  state   whats-next 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

   

 =visual>   

  isa   visual-object 

==>    

 !bind! =num-links-read (eval *number-widgets-read*) ; for debugging  

 !output! (>>> Choosing best widget =best-widget after assessing =num-links-read widgets <<<) 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

     

 =visual> 

  

 =goal> 

  state   choose-best-widget 

) 

 

(p go-back 

 =goal> 

  ISA   search-task 

  state   whats-next 

==>  

 !eval! (with-open-file (*file* (concatenate 'string 

  (substitute #\- #\? (subseq *task-description* 0 9)) 

  "_C=" (write-to-string *go-back-cost*) 

  "_K=" (write-to-string *SNIF-ACT-k-value*) ".txt") 

  :direction :output 

  :if-does-not-exist :create 

  :if-exists :append) 

  (format *file* (concatenate 'string (write-to-string (1+ *model-run*)) ";" 

           (write-to-string *step-index*) ";" 

           (if *current-group* *current-group* (name (curframe 

*cogtool-design*))) ";" 

           "GO-BACK" ";" 

           "FIND" ";" 

           (write-to-string (mp-time)) ";" 

           (write-to-string *number-widgets-read*) "~%"))) 

          

 !eval! (incf *step-index*) 

 

 -visual-location> 

  

 =goal> 

  state   go-back-to-previous 

) 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Productions for Motor actions after decision taken ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;    

 

(p look-at-best-widget-if-not-already-looking-at-it 

 =goal>   

  ISA   search-task 

  best-widget  =best-widget 

  best-loc  =best-loc 

  state   choose-best-widget  

 

 ?visual> 

  state   free    

    

 =visual> 

  isa   visual-object 

   - screen-pos =best-loc 

==> 

 !output! (>>> Look at best widget =best-widget <<<) 

 

 +visual-location> =best-loc 

  

 +visual> 

  isa   move-attention 

  screen-pos  =best-loc 

    

 =goal> 

  state   choose-best-widget 

) 

 

(p look-at-best-widget-after-no-more-widgets-to-look-at 

 =goal>   

  ISA   search-task 

  best-widget  =best-widget 

  best-loc  =best-loc  

  state   choose-best-widget  

     

 ?visual> 

  state   free 

  buffer   empty ;;; apparently the visual buffer gets cleared when the request to visual-location fails 

==> 

 !output! (>>> Look at best widget =best-widget <<<) 

 

 +visual-location> =best-loc  

  

 +visual> 

  isa   move-attention 

  screen-pos  =best-loc 

    

 =goal> 
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  state   choose-best-widget 

) 

 

(p change-focus-within-group 

 =goal>   

  ISA   search-task 

  best-loc  =best-loc 

  group   =group 

  state   choose-best-widget 

    

 ?visual> 

  state   free 

   

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

  kind   cogtool-group 

  widget-name   =widget-name 

  textual-cue   =textual-cue 

    

 =visual> 

  isa   visual-object 

  screen-pos  =best-loc 

==> 

 !output! (>>> Focus on best group =widget-name <<<) 

 

 !eval! (push (list *best-widget-scent*) *widget-infoscent-list*) ;;; Apr 1 - To support *modified-mean-prev-page* and 

*modified-mean-current-page* 

 !eval! (push *widget-infoscent-list* *widget-infoscent-stack*) 

 

 !eval! (with-open-file (*file* (concatenate 'string 

  (substitute #\- #\? (subseq *task-description* 0 9)) 

  "_C=" (write-to-string *go-back-cost*) 

  "_K=" (write-to-string *SNIF-ACT-k-value*) ".txt") 

  :direction :output 

  :if-does-not-exist :create 

  :if-exists :append) 

  (format *file* (concatenate 'string (write-to-string (1+ *model-run*)) ";" 

           (write-to-string *step-index*) ";" 

           =group ";" 

           (trim =widget-name) ";" 

           "FIND;" 

           (write-to-string (mp-time)) ";" 

           (write-to-string *number-widgets-read*) "~%"))) 

  

 !eval! (push (list (name (curframe *cogtool-design*)) =group) *history*) 

 !eval! (incf *step-index*) 

 

 !bind! =value (if *recognize-equivalent-links-in-half-flatten-layout* (subseq =widget-name 15) =widget-name) 

  

 =visual> 

  value   =widget-name 
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  status   chosen 

    

 -visual> ; ensures modified chunk in visual buffer enters DM 

 

 !eval! (reset-frame-parameters) 

 !eval! (setf *current-group* =widget-name) 

  

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-location 

  group   =widget-name 

  state   find   

) 

    

(p change-focus-within-frame-group 

 =goal>   

  ISA   search-task 

  best-loc  =best-loc 

  group   nil 

  state   choose-best-widget 

    

 ?visual> 

  state   free 

   

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

  kind   cogtool-group 

  widget-name   =widget-name 

  textual-cue   =textual-cue 

    

 =visual> 

  isa   visual-object 

;  screen-pos    =visual-location ; LHS fails to match if this line is un-commented 

  screen-pos  =best-loc 

==> 

 !output! (>>> Focus on best group =widget-name <<<) 

 

 !eval! (push (list *best-widget-scent*) *widget-infoscent-list*) ;;; To support *modified-mean-prev-page* and *modified-mean-

current-page* 

 !eval! (push *widget-infoscent-list* *widget-infoscent-stack*) 

 

 !eval! (with-open-file (*file* (concatenate 'string 

  (substitute #\- #\? (subseq *task-description* 0 9)) 

  "_C=" (write-to-string *go-back-cost*) 

  "_K=" (write-to-string *SNIF-ACT-k-value*) ".txt") 

  :direction :output 

  :if-does-not-exist :create 

  :if-exists :append) 

  (format *file* (concatenate 'string (write-to-string (1+ *model-run*)) ";" 

           (write-to-string *step-index*) ";" 

           (name (curframe *cogtool-design*)) ";" 
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           (trim =widget-name) ";" 

           "FIND;" 

           (write-to-string (mp-time)) ";" 

           (write-to-string *number-widgets-read*) "~%"))) 

  

 !eval! (push (list (name (curframe *cogtool-design*)) nil) *history*) 

 !eval! (incf *step-index*) 

 

 !bind! =value (if *recognize-equivalent-links-in-half-flatten-layout* (subseq =widget-name 15) =widget-name) 

  

 =visual> 

  value   =value 

  status   chosen 

    

 -visual> ; ensures modified chunk in visual buffer enters DM 

 

 !eval! (reset-frame-parameters) 

 !eval! (setf *current-group* =widget-name) 

  

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-location 

  group   =widget-name 

  state   find   

) 

    

(p move-mouse 

 !eval! (not *use-finger-default-value*) 

 

 =goal>   

  ISA   search-task 

  best-loc  =best-loc 

  state   choose-best-widget 

    

 ?visual> 

  state   free 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

    - kind   cogtool-group 

   

 =visual> 

  isa   visual-object 

  screen-pos  =best-loc 

    

 ?manual>    

  state   free  

==>    

 +manual> 

  isa   move-cursor 

  loc   =visual-location 
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 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

   

 =visual> 

   

 =goal> 

  state   click 

) 

 

(p click-mouse-within-group 

 =goal> 

  ISA   search-task 

  best-loc  =best-loc 

  group   =group 

  state   click 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location  

  widget-name  =widget-name 

  textual-cue   =textual-cue 

   

 =visual> 

  isa   visual-object 

  screen-pos  =best-loc 

    

 ?manual>    

  state   free 

==> 

 !bind! =frame-name (name (curframe *cogtool-design*)) 

 !eval! (push (list *best-widget-scent*) *widget-infoscent-list*) ;;; Apr 1 - To support *modified-mean-prev-page* and 

*modified-mean-current-page* 

 !eval! (push *widget-infoscent-list* *widget-infoscent-stack*) 

 !eval! (push (list =frame-name =group) *history*) 

 

 !bind! =widget-name (if *recognize-equivalent-links-in-half-flatten-layout* =textual-cue =widget-name) 

  

 =visual> 

  value   =widget-name 

  status   chosen 

    

 -visual> ; ensures modified chunk in visual buffer enters DM 

    

 +manual> 

  isa   click-mouse 

    

 =goal> 

  state   wait 

) 

 

(p click-mouse-within-frame_group 

 =goal> 
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  ISA   search-task 

  best-loc  =best-loc 

  group   nil 

  state   click 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location  

  widget-name  =widget-name 

  textual-cue   =textual-cue 

   

 =visual> 

  isa   visual-object 

  screen-pos  =best-loc 

    

 ?manual>    

  state   free 

==> 

 !bind! =frame-name (name (curframe *cogtool-design*)) 

 !eval! (push (list *best-widget-scent*) *widget-infoscent-list*) ;;; Apr 1 - To support *modified-mean-prev-page* and 

*modified-mean-current-page* 

 !eval! (push *widget-infoscent-list* *widget-infoscent-stack*) 

 !eval! (push (list =frame-name nil) *history*) 

 

 !bind! =widget-name (if *recognize-equivalent-links-in-half-flatten-layout* =textual-cue =widget-name) 

  

 =visual> 

  value   =widget-name 

  status   chosen 

    

 -visual> ; ensures modified chunk in visual buffer enters DM 

    

 +manual> 

  isa   click-mouse 

    

 =goal> 

  state   wait 

) 

 

(p tap-finger-within-group 

 !eval! (eval *use-finger-default-value*) 

 

 =goal>   

  ISA   search-task 

  best-loc  =best-loc   

  group   =group 

  state   choose-best-widget 

    

 ?visual> 

  state   free 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 
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  isa   cogtool-visual-location 

    - kind   cogtool-group 

  widget-name  =widget-name 

  textual-cue   =textual-cue 

   

 =visual> 

  isa   visual-object 

  screen-pos  =best-loc  

    

 ?manual>    

  state   free 

==> 

 !bind! =frame-name (name (curframe *cogtool-design*)) 

 !eval! (push (list *best-widget-scent*) *widget-infoscent-list*) ;;; Apr 1 - To support *modified-mean-prev-page* and 

*modified-mean-current-page* 

 !eval! (push *widget-infoscent-list* *widget-infoscent-stack*) 

 !eval! (push (list =frame-name =group) *history*) 

 

 !bind! =widget-name (if *recognize-equivalent-links-in-half-flatten-layout* =textual-cue =widget-name)  

  

 =visual> 

  value   =widget-name 

  status   chosen 

    

 -visual> ; ensures modified chunk in visual buffer enters DM 

    

 +manual> 

  isa   move-cursor 

  loc   =visual-location 

    

 =goal> 

  state   wait 

) 

 

(p tap-finger-within-frame-group 

 !eval! (eval *use-finger-default-value*) 

 

 =goal>   

  ISA   search-task 

  best-loc  =best-loc   

  group   nil 

  state   choose-best-widget 

    

 ?visual> 

  state   free 

 

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

    - kind   cogtool-group 

  widget-name  =widget-name 

  textual-cue   =textual-cue 
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 =visual> 

  isa   visual-object 

  screen-pos  =best-loc  

    

 ?manual>    

  state   free 

==> 

 !bind! =frame-name (name (curframe *cogtool-design*)) 

 !eval! (push (list *best-widget-scent*) *widget-infoscent-list*) ;;; Apr 1 - To support *modified-mean-prev-page* and 

*modified-mean-current-page* 

 !eval! (push *widget-infoscent-list* *widget-infoscent-stack*) 

 !eval! (push (list =frame-name nil) *history*) 

 

 !bind! =widget-name (if *recognize-equivalent-links-in-half-flatten-layout* =textual-cue =widget-name) 

 

 =visual> 

  value   =widget-name 

  status   chosen 

   

 -visual> ; ensures modified chunk in visual buffer enters DM 

    

 +manual> 

  isa   move-cursor 

  loc   =visual-location 

    

 =goal> 

  state   wait 

) 

 

 

(p check-for-target-frame-within-frame-group 

 =goal> 

  ISA   search-task 

  best-widget   =best-widget 

  group   nil 

  state   wait 

    

 ?manual>    

  state   free 

==> 

 !eval! (if *use-finger-default-value* (infer-transition *cogtool-design*)) ; CogTool device currently only call infer-

transition on a mouse click 

    

 !bind! =state (if (equal (name (curframe *cogtool-design*)) (first *CogTool-Explorer-target-frames*)) 'found 'find) ;;; to be 

modified to support multiple target frames 

 

 ; update log file 

 !eval! (with-open-file (*file* (concatenate 'string 

  (substitute #\- #\? (subseq *task-description* 0 9)) 

  "_C=" (write-to-string *go-back-cost*) 
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  "_K=" (write-to-string *SNIF-ACT-k-value*) ".txt") 

  :direction :output 

  :if-does-not-exist :create 

  :if-exists :append) 

  (format *file* (concatenate 'string (write-to-string (1+ *model-run*)) ";" 

           (write-to-string *step-index*) ";" 

           (if (second (first *history*)) (second (first 

*history*)) (first (first *history*))) ";" 

           (trim =best-widget) ";" 

           (string =state) ";" 

           (write-to-string (mp-time)) ";" 

           (write-to-string *number-widgets-read*) "~%"))) 

  

 !eval! (incf *step-index*) 

  

 ; knowledge to handle a self-transition link as essentially null 

 !eval! (if (equal (name (curframe *cogtool-design*)) (first (first *history*))) (progn (pop *history*) (pop *widget-infoscent-

stack*))) 

  

 ; knowledge to focus on the subordinate group upon visiting a 2nd-level page 

 !bind! =group (if (and *handle-groups-in-half-flatten-layout* (find (name (curframe *cogtool-design*)) *2nd-level-pages* :test 

#'equal)) 

                (progn (push (first *widget-infoscent-stack*) *widget-infoscent-stack*) 

                    (push (list (name (curframe *cogtool-design*)) nil) *history*) 

              (concatenate 'string "Subordinate in " (name (curframe *cogtool-design*)))) 

       nil) 

 !eval! (setf *current-group* =group) 

 

 !eval! (reset-frame-parameters) 

  

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-loc 

  best-widget   dummy-widget 

  group   =group 

  state   =state      

) 

 

(p check-for-target-frame-within-group 

 =goal> 

  ISA   search-task 

  best-widget   =best-widget 

  group   =group 

  state   wait 

    

 ?manual>    

  state   free 

==> 

 !eval! (if *use-finger-default-value* (infer-transition *cogtool-design*)) ; CogTool device currently only call infer-

transition on a mouse click 

    



 
170 

 !bind! =state (if (equal (name (curframe *cogtool-design*)) (first *CogTool-Explorer-target-frames*)) 'found 'find) ;;; to be 

modified to support multiple target frames 

 

 ; update log file 

 !eval! (with-open-file (*file* (concatenate 'string 

  (substitute #\- #\? (subseq *task-description* 0 9)) 

  "_C=" (write-to-string *go-back-cost*) 

  "_K=" (write-to-string *SNIF-ACT-k-value*) ".txt") 

  :direction :output 

  :if-does-not-exist :create 

  :if-exists :append) 

  (format *file* (concatenate 'string (write-to-string (1+ *model-run*)) ";" 

           (write-to-string *step-index*) ";" 

           (if (second (first *history*)) (second (first 

*history*)) (first (first *history*))) ";" 

           (trim =best-widget) ";" 

           (string =state) ";" 

           (write-to-string (mp-time)) ";" 

           (write-to-string *number-widgets-read*) "~%"))) 

  

 !eval! (incf *step-index*) 

  

 ; "knowledge" to handle a self-transition link as essentially null 

 !eval! (if (equal (name (curframe *cogtool-design*)) (first (first *history*))) (progn (pop *history*) (pop *widget-infoscent-

stack*))) 

 !eval! (setf *current-group* (if (equal (name (curframe *cogtool-design*)) (first (first *history*))) =group nil)) 

 !bind! =group (if (equal (name (curframe *cogtool-design*)) (first (first *history*))) =group nil) 

  

 !eval! (reset-frame-parameters) 

  

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-loc 

  best-widget   dummy-widget 

  group   =group 

  state   =state      

) 

 

(p go-back-to-previous-group 

 =goal> 

  isa   search-task 

    - group   nil 

  state   go-back-to-previous 

==> 

 !eval! (pop *widget-infoscent-stack*) 

 !eval! (setf *current-group* (second (first *history*))) 

 !bind! =group (second (pop *history*)) 

  

 !eval! (reset-frame-parameters) 

  

 =goal> 
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  best-cue  "dummy-text" 

  best-loc   dummy-loc 

  best-widget   dummy-widget 

  group   =group 

  state   find 

) 

 

(p go-back-to-another-group-using-non-header-process 

 !eval! (eval *mixed-visual-search*) 

 

 =goal> 

  isa   search-task 

  group   =current-group 

  state   go-back-to-previous 

   

 ?visual> 

  state   free 

==>  

 !eval! (setf *current-group* (second (first *history*))) 

 !bind! =previous-group (second (first *history*)) 

 

 +visual-location> 

  isa    cogtool-visual-location 

  kind   cogtool-group 

    - widget-name  =current-group 

  member-of-group =previous-group 

  :nearest   current 

  

 =goal> 

  group   =previous-group 

  state   non-header-process 

) 

 

(p look-at-another-group-in-non-header-process 

 =goal> 

  isa   search-task 

  state   non-header-process 

   

 =visual-location> 

  isa    cogtool-visual-location 

  kind   cogtool-group   

   

 ?visual> 

  state   free 

==> 

 =visual-location> 

  

 +visual> 

  isa   move-attention 

  screen-pos  =visual-location 
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 =goal> 

  state   look-at-another-group 

) 

 

(p focus-on-another-group-in-non-header-process 

 =goal> 

  isa   search-task 

  group   nil 

  state   look-at-another-group 

   

 ?visual> 

  state   free 

   

 =visual-location> ; temporary solution until cogtool-visual-location slots are moved to cogtool-visual-object 

  isa   cogtool-visual-location 

  kind   cogtool-group 

  widget-name   =widget-name 

    

 =visual> 

  isa   visual-object 

==> 

 !output! (>>> Focus on another group =widget-name <<<) 

  

 !eval! (with-open-file (*file* (concatenate 'string 

  (substitute #\- #\? (subseq *task-description* 0 9)) 

  "_C=" (write-to-string *go-back-cost*) 

  "_K=" (write-to-string *SNIF-ACT-k-value*) ".txt") 

  :direction :output 

  :if-does-not-exist :create 

  :if-exists :append) 

  (format *file* (concatenate 'string (write-to-string (1+ *model-run*)) ";" 

           (write-to-string *step-index*) ";" 

           (name (curframe *cogtool-design*)) ";" 

           (trim =widget-name) ";" 

           "FIND;" 

           (write-to-string (mp-time)) ";" 

           (write-to-string 0) "~%"))) 

  

 !eval! (incf *step-index*) 

 

 !eval! (update-infoscent-stack-in-non-header-process) 

 !eval! (reset-frame-parameters) 

 !eval! (setf *current-group* =widget-name) 

  

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-location 

  group   =widget-name 

  state   find   

) 
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(p go-back-to-previous-frame 

 !eval! (eval *use-back-button*) 

 

 =goal> 

  isa   search-task 

  group   nil 

  state   go-back-to-previous 

 

 ?visual> 

  state   free 

==> 

 +visual-location> 

  isa    cogtool-visual-location 

  display-label  "Back" 

 

 =goal> 

  state locate-back-button 

) 

 

(p look-at-back-button 

 =goal> 

  isa   search-task 

  state   locate-back-button 

 

 ?visual> 

  state   free 

 

 =visual-location> 

  isa   cogtool-visual-location 

  display-label   "Back" 

==> 

 =visual-location> 

 

 +visual> 

  isa   move-attention 

  screen-pos  =visual-location 

    

 =goal> 

  state   look-at-back-button 

) 

 

(p move-mouse-to-back-button 

 =goal> 

  isa   search-task 

  state   look-at-back-button 

 

 ?visual> 

  state   free 

 

 =visual-location> 

  isa   cogtool-visual-location   
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 =visual> 

  isa   visual-object 

   

 ?manual> 

  state   free  

==>    

 +manual> 

  isa   move-cursor 

  loc   =visual-location 

 

 =goal> 

  state   move-mouse-to-back-button   

) 

 

(p click-back-button 

 =goal> 

  isa   search-task 

  state   move-mouse-to-back-button 

   

 ?manual> 

  state   free  

==> 

 +manual> 

  isa   click-mouse 

  

 =goal> 

  state   click-back-button 

) 

 

(p back-button-clicked 

 =goal> 

  isa   search-task 

  state   click-back-button 

   

 ?manual> 

  state   free  

==>  

 !eval! (pop *widget-infoscent-stack*) 

 !eval! (setf *current-group* (second (first *history*))) 

 !bind! =group (second (first *history*)) 

 

 !eval! (if *use-back-button-history-in-half-flatten-layout* (transition (first (pop *history*)) *cogtool-design*) (pop 

*history*)) 

   

 !eval! (reset-frame-parameters) 

  

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-loc 

  best-widget   dummy-widget 
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  group   =group 

  state   find 

) 

 

(p go-back-to-previous-frame-direct 

 !eval! (not *use-back-button*) 

 

 =goal> 

  isa   search-task 

  group   nil 

  state   go-back-to-previous 

==> 

 !eval! (pop *widget-infoscent-stack*) 

 !eval! (setf *current-group* (second (first *history*))) 

 !bind! =group (second (first *history*)) 

 !eval! (transition (first (pop *history*)) *cogtool-design*) 

   

 !eval! (reset-frame-parameters) 

   

 =goal> 

  best-cue  "dummy-text" 

  best-loc   dummy-loc 

  best-widget   dummy-widget 

  group   =group 

  state   find 

) 

 

);end of define-model 

 

(dotimes (*model-run* (1- *number-of-runs*)) 

 (setq *cogtool-result* (cogtool-run-model)) 

 (format t "~A~%<<< CT-Explorer: between runs marker >>>" *cogtool-result*) 

 (reset)) 

  

(setf *model-run* (1- *number-of-runs*)) 

 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Source code from ct-explorer-support.lisp  ;;; 

;;;                                            ;;; 

;;; Includes source code from SNIF-ACT 2.0     ;;; 

;;;    that was retained and modified          ;;;  

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(setf *widget-value-is-title* t) ;;LT 

(setf *infer-transitions* t) ;;LT 

 

(defparameter *code-trace* t) 

 

(defparameter *update-prod-param-verbose* t) 
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(defun find-best-cue (query best-link link-text &key (update-prod t) (noise *infoscent-noise*)) 

  (progn 

    (if *CT-E-Debug* (format t "~S " link-text)) 

    (setf *current-widget-scent* (profitability query (if (stringp link-text) link-text (car link-text)) noise nil))   

    (if *CT-E-Debug* (format t "scent = ~S" *current-widget-scent*)) 

 

    (when (>= *current-widget-scent* *best-widget-scent*) 

      (setf *best-widget-scent* *current-widget-scent*)) 

    (when update-prod 

      (update-prod-parameters *current-widget-scent* *best-widget-scent*)) 

    (if (>= *current-widget-scent* *best-widget-scent*) link-text best-link))) 

 

(defun profitability (query text &optional (noise *infoscent-noise*) (remove-stop-word-p t)) 

  (if (not (string= text "dummy-text")) 

 (if *infoscent_variabilty_between_runs* 

  (let ((prev-value (fetch-assessed-infoscent text))) 

   (if prev-value prev-value 

    (let ((new-value (link-activation query text noise remove-stop-word-p))) 

     (store-assessed-infoscent text new-value) new-value))) 

  (link-activation query text noise remove-stop-word-p)) 

    0.0)) 

 

(defun link-activation (query link &optional (noise *infoscent-noise*) (remove-stop-word-p t)) 

 (if *consider-familarity* 

  (max 0.01 (+ (* (fetch-pmi query link) *similarity-scale-factor* (fetch-familarity link)) (act-r-noise noise))) 

  (max 0.01 (+ (* (fetch-pmi query link) *similarity-scale-factor*) (act-r-noise noise))))) 

 

(defun update-prod-parameters (cur-link-val best-link-val) 

  (let ((read-value (car (car (no-output (spp-fct (list 'read-another-widget :u)))))) 

        (choose-value (car (car (no-output (spp-fct (list 'choose-best-widget :u)))))) 

        (go-back-value (car (car (no-output (spp-fct (list 'go-back :u))))))) 

    (when (> cur-link-val  0) ;SNIF-ACT: read-another-widget may fire a lot otherwise ;CT-E: This is not be necessary anymore, as 

infoscent values are not negative. 

       

      (push cur-link-val *widget-infoscent-list*) 

      (when (>= (length *widget-infoscent-stack*) 1) 

        (if *CT-E-Debug* (format t ", go-back_formula_first_operand = ~S, go-back_formula_second_operand = ~S" 

   (if *second-best-prev-page* (second-best-previous-page (first *widget-infoscent-stack*)) (mean-previous-page 

(first *widget-infoscent-stack*))) 

   (mean-current-page (first *widget-infoscent-stack*) *widget-infoscent-list*))) 

        (spp-fct (list 'go-back :u (- (-  

  (if *second-best-prev-page* (second-best-previous-page (first *widget-infoscent-stack*)) (mean-previous-page (first 

*widget-infoscent-stack*))) 

  (mean-current-page (first *widget-infoscent-stack*) *widget-infoscent-list*) 

  ) *go-back-cost*)))) 

             

      (spp-fct (list 'read-another-widget :u (/ (+ read-value cur-link-val) (1+ *number-widgets-read*)))) 

      (spp-fct (list 'choose-best-widget :u (/ (+ choose-value best-link-val) (+ (1+ *number-widgets-read*) *SNIF-ACT-k-value*)))) 

       

      (when *update-prod-param-verbose* 



 

 

 

177 

        (spp read-another-widget :u) 

        (spp choose-best-widget :u) 

        (spp go-back :u))     

      ))) 

 

(defun mean-previous-page (prev-page-list) 

  (let ((numerator (if *modified-mean-prev-page* (- (apply #'+ (rest prev-page-list)) (first (last (first prev-page-list)))) (apply 

#'+ (rest prev-page-list)))) 

        (denominator (if *modified-mean-prev-page* (- (length prev-page-list) 2) (- (length prev-page-list) 1)))) 

    (if (> denominator 0) (/ numerator denominator) 0))) 

 

(defun second-best-previous-page (prev-page-list) 

  (let ((temp-list (copy-seq (rest prev-page-list)))) 

    (second (sort temp-list #'>)))) 

 

(defun mean-current-page (prev-page-list curr-page-list) 

 (if *modified-mean-current-page* 

  (mean (append (first prev-page-list) curr-page-list)) 

  (if *update_confidence* 

   (mean (append (butlast (first prev-page-list)) curr-page-list)) 

   (mean curr-page-list)))) 

  

(defun mean (num-list) 

  (let ((sum (apply #'+ num-list)) 

        (len (length num-list))) 

    (if (> len 0) (/ sum len) 0))) 

  

(defun update-infoscent-stack-in-non-header-process () 

  (let* ((prev-page-list (first *widget-infoscent-stack*)) 

   (selected-infoscent (first (last (first prev-page-list)))) 

   (position-selected (position selected-infoscent prev-page-list)) 

   (mis-previous (mean-previous-page prev-page-list))) 

 (progn 

  (setf (nth position-selected (first *widget-infoscent-stack*)) (* mis-previous *non-header-process-conf-scale*)) 

  (setf (first (first *widget-infoscent-stack*)) (list (* mis-previous *non-header-process-conf-scale*)))))) 

 

   

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Infoscent Storage              ;;; 

;;;                                ;;; 

;;; Should change "pmi" to "score" ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(defvar *pmi* (make-hash-table :test #'equalp)) ;double hash table for pmi data 

 

(defun fetch-pmi (word1 word2) 

  (let ((h-table2 (gethash word1 *pmi*))) 

    (if h-table2 

        (gethash word2 h-table2) 

      nil))) 
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(defun store-score (w1 w2 freq) 

  (progn (store-pmi-fct w1 w2 freq) 

         (store-pmi-fct w2 w1 freq))) 

   

(defun store-pmi-fct (word1 word2 freq) 

  (let ((h-table2 (gethash word1 *pmi*))) 

    (if h-table2 

        (setf (gethash word2 h-table2) freq) 

      (progn 

        (setf (gethash word1 *pmi*) (make-hash-table :test #'equalp)) 

        (setf (gethash word2 (gethash word1 *pmi*)) freq))) 

    freq)) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Overwrite find-current-locs-with-spec in ACT-R vision.lisp to ;;; 

;;;    enable fluctuation factor when testing for nearest         ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(defmethod find-current-locs-with-spec ((vis-mod vision-module) spec) 

  "Assume that it's a valid visual-location chunk-spec with at most 1 

   attended slot specification and one nearest spec" 

   

  (let* ((main-spec (strip-request-parameters-from-chunk-spec spec)) 

         (attended (when (slot-in-chunk-spec-p spec :attended) 

                     (car (chunk-spec-slot-spec spec :attended)))) 

         (slots (chunk-spec-slot-spec main-spec)) 

         (current (current-marker vis-mod)) 

         (current-type (when current (chunk-chunk-type-fct current))) 

         (nearest (when (slot-in-chunk-spec-p spec :nearest) 

                    (car (chunk-spec-slot-spec spec :nearest)))) 

         (min-max-tests nil)) 

     

       

    ;; Remap all current values to the current chunk 

     

    (if current 

        (dolist (x slots) 

          (when (eq (third x) 'current) 

            (if (find (second x) (chunk-type-slot-names-fct current-type)) 

                (setf (third x) (chunk-slot-value-fct current (second x))) 

              (progn 

                (print-warning "Current visual-location does not have a slot named ~S so it is ignored in the request." 

                               (second x)) 

                (setf slots (remove x slots)))))) 

      (dolist (x slots) 

        (when (eq (third x) 'current) 

          (print-warning "There is no currently attended location.  So, request specifying ~S as current is being ignored." 

                         (second x)) 

          (setf slots (remove x slots))))) 

     

    ;; Remove all tests for highest and lowest for later 
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    (dolist (x slots) 

      (when (or (eq (third x) 'lowest) 

                (eq (third x) 'highest)) 

        (push-last x min-max-tests) 

        (setf slots (remove x slots)))) 

     

    ;; update the finsts an new markers 

     

    (when attended 

      (update-new vis-mod) 

      (check-finsts vis-mod)) 

   

    ;; find the chunks that match 

     

    (let ((possible-chunks (if attended 

                               (matching-attended-chunks attended (visicon-chunks vis-mod t)) 

                             (visicon-chunks vis-mod t))) 

          (changed nil)) 

       

      ;; Hack to reassign value slots as needed before testing 

       

      (dolist (check possible-chunks) 

        (when (chunk-real-visual-value check) 

          (push (cons check (chunk-slot-value-fct check 'value)) changed) 

          (fast-set-chunk-slot-value-fct check 'value (chunk-real-visual-value check))))  

       

    (let ((matching-chunks (find-matching-chunks (slot-specs-to-chunk-spec (chunk-spec-chunk-type main-spec) slots) 

                                                 :chunks possible-chunks :variable-char #\&))) 

      ;; apply all of the lowest/highest constraints 

      ;; in the order provided 

       

      (dolist (x min-max-tests) 

        (let ((value nil) 

              (truth (first x)) 

              (slot (second x)) 

              (test (third x))) 

           

          ;; find the min/max value 

          (dolist (y matching-chunks) 

            (let ((cur-val (fast-chunk-slot-value-fct y slot))) 

              (unless (numberp cur-val) 

                (setf value :fail) 

                (print-warning "Cannot apply ~S constraint because not all chunks have a numerical value." x) 

                (return)) 

              (when (or (null value)  

                        (and (eq test 'lowest) 

                             (< cur-val value)) 

                      (and (eq test 'highest) 

                           (> cur-val value))) 

                (setf value cur-val)))) 
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          (setf matching-chunks (remove-if-not (lambda (z) 

                                                 (if (eq truth '=) 

                                                     (= value z) 

                                                   (not (= value z)))) 

                                               matching-chunks 

                                               :key (lambda (z)  

                                                      (fast-chunk-slot-value-fct z slot)))))) 

       

      ;; if there's a nearest constraint then 

      ;; apply that filter now 

       

      (when (and nearest matching-chunks) 

                 

        (if (or (eq (third nearest) 'current) 

                (eq (third nearest) 'current-x) 

                (eq (third nearest) 'current-y) 

                (and (chunk-p-fct (third nearest)) 

                     (chunk-type-subtype-p-fct (chunk-chunk-type-fct (third nearest)) 'visual-location))) 

         

            (let ((value nil) 

                  (truth (first nearest)) 

                  (test (third nearest)) 

                  (matches nil) 

                  (current-loc (aif (current-marker vis-mod)  

                                    it  

                                    (progn  

                                      (model-warning "No location has yet been attended so current is assumed to be at 0,0.") 

                                      (car (define-chunks (isa visual-location screen-x 0 screen-y 0))))))) 

           

          ;; find the min value 

          (dolist (y matching-chunks) 

            (let ((cur-val (cond ((eq test 'current) 

                                  (* (+ 1 (act-r-noise 0.1654)) (dist (xy-loc y) (xy-loc current-loc)))) ;;;;; Modified 

                                 ((eq test 'current-x) 

                                  (abs (- (fast-chunk-slot-value-fct y 'screen-x) (fast-chunk-slot-value-fct current-loc 'screen-x)))) 

                                 ((eq test 'current-y) 

                                  (abs (- (fast-chunk-slot-value-fct y 'screen-y) (fast-chunk-slot-value-fct current-loc 'screen-y)))) 

                                 (t 

                                  (dist (xy-loc y) (xy-loc test)))))) 

              (if (or (null value)  

                      (< cur-val value)) 

                  (progn 

                    (setf value cur-val) 

                    (setf matches (list y))) 

                (when (= cur-val value) 

                  (push y matches))))) 

           

              (setf matching-chunks matches)) 

           

          (progn 
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            (print-warning "Nearest test in a visual-location request must be current or a chunk that is a subtype of visual-

location.") 

            (print-warning "Ignoring nearest request for ~S." (third nearest)))) 

          )  

       

      ;; undo the value slots that were changed for matching purposes 

       

      (dolist (restore changed) 

        (fast-set-chunk-slot-value-fct (car restore) 'value (cdr restore))) 

             

      matching-chunks)))) 

    

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; Familarity and Assessed Infoscent ;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

(defvar *familarity* (make-hash-table :test #'equalp)) 

 

(defun store-familarity (word value) 

  (setf (gethash word *familarity*) value)) 

 

(defun fetch-familarity (word) 

  (let ((value (gethash word *familarity*))) 

 (if value value 1))) 

 

(defun store-assessed-infoscent (text infoscent) 

  (setf (gethash text *assessed-infoscent*) infoscent)) 

 

(defun fetch-assessed-infoscent (text) 

  (gethash text *assessed-infoscent*)) 
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D: PYTHON SCRIPT TO PROCESS COGTOOL-EXPLORER 1.2 LOG FILES 
import os 

 

TRIAL, SEQ, PAGE, LINK, STATE, TIME, LOOKEDAT = (0, 1, 2, 3, 4, 5, 6) 

 

linklevel_file = open('LinkLevel', 'w') 

print >> linklevel_file, 'Task;Page;Link;Visits by M;Selections by M;Reselections by M;Consecutive Reselections by M;GB by 

M;Terminations by M;Success by M' 

# note: # visits to the top page = # link selections on the top page 

# note: # visits to a subordinate page = # link selections on that subordinate page + go-backs from that subordinate page 

# note: terminations on a header or subordinate page are not counted as visits to that page (to match the tabulation from participant 

log files) 

# note: selections of a header link to a page = go-backs from that page + terminations at leaf pages under that page 

 

time_file = open('time', 'w') 

print >> time_file, 'Task;Page;Avg Time Before Link Click by Model;Avg Links Looked-at Before Link Click by Model' 

 

tasklevel_file = open('TaskLevel', 'w') 

print >> tasklevel_file, 'Task;Avg Time Before Link Click in 2-click-success Trials by Model;No of Go-backs in All Trials by Model;# 

1-C-S by M;' + \ 

      '# S by M;Avg C-to-S by M;Avg C-to-S on Top-L by M;Avg C-to-S on 2nd-L by M;Avg GB-to-S by M;' + \ 

      'Avg T-to-S by M;Avg C-to-C-T-to-S by M;' + \ 

      'Avg C-to-C-T-to-S on Top-L by M;Avg C-to-C-T-to-S on 2nd-L by M;' + \ 

      '# F by M;Avg Clicks in Failure Trials by Model;Avg Clicks on Headings in Failure Trials by Model;Avg Clicks on Sub Links in 

Failure Trials by Model;Avg Go-backs in Failure Trials by Model;' + \ 

      'Avg Time in Failure Trials by Model;Avg Click-to-Click Time in Failure Trials by Model' 

 

calibration_stats_file = open('calibrate_for_jmp', 'w') 

print >> calibration_stats_file, 'Task;Page;Time to Click Link;Agent;Number of Links Looked-at' 

 

names = os.listdir('.') 

for name in names: # for each task 

  if not name.endswith('txt'): 

    continue 

  in_file = open(name) 

  visit_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & 

Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

  select_records = { 

    '0 Start Page':{'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & Philosophy':0, 'Physical 

Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0}, 

    'Art, Language & Literature':{'National & Regional Literature':0, 'Literature & Writing':0, 'Architecture':0, 'Artists':0, 

'Language':0, 'Writers & Poets':0, 'Decorative Arts':0, 'Legends & Folklore':0, 'National & Regional Art':0, 'Painting, Drawing, & 

Graphic Arts':0, 'Sculpture':0, 'Periods & Styles':0, 'Photography':0, 'GO-BACK':0}, 

    'Life Science':{'Plants':0, 'People in Life Science':0, 'Medicine':0, 'Invertebrate Animals':0, 'Fish':0, 'Algae & Fungi':0, 

'Agriculture, Foodstuffs, & Livestock':0, 'Mammals':0, 'Reptiles & Amphibians':0, 'Biological Principles & Concepts':0, 'Anatomy & 

Physiology':0, 'Environment':0, 'Birds':0, 'Viruses, Monerans, & Protists':0, 'GO-BACK':0}, 

    'History':{'History of Asia & Australasia':0, 'People in European History':0, 'People in United States History':0, 'United States 

History':0, 'African History':0, 'World History & Concepts':0, 'Ancient History':0, 'History of the Americas':0, 'European History':0, 

'GO-BACK':0}, 
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    'Geography':{'World Cities, Towns, & Villages':0, 'Regions of the World':0, 'Rivers, Lakes, & Waterways':0, 'Parks & Monuments':0, 

'Countries':0, 'Canadian Provinces & Cities':0, 'Islands':0, 'Mountain Ranges, Peaks, & Landforms':0, 'U.S. Cities, Towns, & 

Villages':0, 'Maps & Mapmaking':0, 'Oceans & Seas':0, 'Exploration & Explorers':0, 'U.S. States, Territories, & Regions':0, 'GO-

BACK':0}, 

    'Religion & Philosophy':{'Theology & Practices':0, 'Mythology':0, 'Religious Figures':0, 'Philosophy':0, 'Religions & Religious 

Groups':0, 'Scripture':0, 'The Occult':0, 'GO-BACK':0}, 

    'Physical Science & Technology':{'Construction & Engineering':0, 'Chemistry':0, 'Earth Science':0, 'Computer Science & 

Electronics':0, 'Machines & Tools':0, 'People in Physical Science':0, 'Astronomy & Space Science':0, 'Paleontology':0, 'Industry, 

Mining, & Fuels':0, 'Physics':0, 'Transportation':0, 'Communications':0, 'Mathematics':0, 'Military Technology':0, 'Time, Weights, & 

Measures':0, 'GO-BACK':0}, 

    'Social Science':{'Economics & Business':0, 'Organizations':0, 'Institutions':0, 'Political Science':0, 'Psychology':0, 'Law':0, 

'Education':0, 'Anthropology':0, 'Military':0, 'Sociology & Social Reform':0, 'Calendar, Holidays, & Festivals':0, 'Archaeology':0, 

'GO-BACK':0}, 

    'Sports, Hobbies, & Pets':{'Sports':0, 'Sports Figures':0, 'Games, Hobbies, & Recreation':0, 'Pets':0, 'GO-BACK':0}, 

    'Performing Arts':{'Theater':0, 'Musicians & Composers':0, 'Cinema, Television, & Broadcasting':0, 'Music':0, 'Dance':0, 'Musical 

Instruments':0, 'GO-BACK':0}} 

  page_terminate_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion 

& Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  leaf_terminate_records = { 

    'Art, Language & Literature':{'National & Regional Literature':0, 'Literature & Writing':0, 'Architecture':0, 'Artists':0, 

'Language':0, 'Writers & Poets':0, 'Decorative Arts':0, 'Legends & Folklore':0, 'National & Regional Art':0, 'Painting, Drawing, & 

Graphic Arts':0, 'Sculpture':0, 'Periods & Styles':0, 'Photography':0, 'GO-BACK':0}, 

    'Life Science':{'Plants':0, 'People in Life Science':0, 'Medicine':0, 'Invertebrate Animals':0, 'Fish':0, 'Algae & Fungi':0, 

'Agriculture, Foodstuffs, & Livestock':0, 'Mammals':0, 'Reptiles & Amphibians':0, 'Biological Principles & Concepts':0, 'Anatomy & 

Physiology':0, 'Environment':0, 'Birds':0, 'Viruses, Monerans, & Protists':0, 'GO-BACK':0}, 

    'History':{'History of Asia & Australasia':0, 'People in European History':0, 'People in United States History':0, 'United States 

History':0, 'African History':0, 'World History & Concepts':0, 'Ancient History':0, 'History of the Americas':0, 'European History':0, 

'GO-BACK':0}, 

    'Geography':{'World Cities, Towns, & Villages':0, 'Regions of the World':0, 'Rivers, Lakes, & Waterways':0, 'Parks & Monuments':0, 

'Countries':0, 'Canadian Provinces & Cities':0, 'Islands':0, 'Mountain Ranges, Peaks, & Landforms':0, 'U.S. Cities, Towns, & 

Villages':0, 'Maps & Mapmaking':0, 'Oceans & Seas':0, 'Exploration & Explorers':0, 'U.S. States, Territories, & Regions':0, 'GO-

BACK':0}, 

    'Religion & Philosophy':{'Theology & Practices':0, 'Mythology':0, 'Religious Figures':0, 'Philosophy':0, 'Religions & Religious 

Groups':0, 'Scripture':0, 'The Occult':0, 'GO-BACK':0}, 

    'Physical Science & Technology':{'Construction & Engineering':0, 'Chemistry':0, 'Earth Science':0, 'Computer Science & 

Electronics':0, 'Machines & Tools':0, 'People in Physical Science':0, 'Astronomy & Space Science':0, 'Paleontology':0, 'Industry, 

Mining, & Fuels':0, 'Physics':0, 'Transportation':0, 'Communications':0, 'Mathematics':0, 'Military Technology':0, 'Time, Weights, & 

Measures':0, 'GO-BACK':0}, 

    'Social Science':{'Economics & Business':0, 'Organizations':0, 'Institutions':0, 'Political Science':0, 'Psychology':0, 'Law':0, 

'Education':0, 'Anthropology':0, 'Military':0, 'Sociology & Social Reform':0, 'Calendar, Holidays, & Festivals':0, 'Archaeology':0, 

'GO-BACK':0}, 

    'Sports, Hobbies, & Pets':{'Sports':0, 'Sports Figures':0, 'Games, Hobbies, & Recreation':0, 'Pets':0, 'GO-BACK':0}, 

    'Performing Arts':{'Theater':0, 'Musicians & Composers':0, 'Cinema, Television, & Broadcasting':0, 'Music':0, 'Dance':0, 'Musical 

Instruments':0, 'GO-BACK':0}} 

 

  successful_records = { 

    'Art, Language & Literature':{'National & Regional Literature':0, 'Literature & Writing':0, 'Architecture':0, 'Artists':0, 

'Language':0, 'Writers & Poets':0, 'Decorative Arts':0, 'Legends & Folklore':0, 'National & Regional Art':0, 'Painting, Drawing, & 

Graphic Arts':0, 'Sculpture':0, 'Periods & Styles':0, 'Photography':0, 'GO-BACK':0}, 
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    'Life Science':{'Plants':0, 'People in Life Science':0, 'Medicine':0, 'Invertebrate Animals':0, 'Fish':0, 'Algae & Fungi':0, 

'Agriculture, Foodstuffs, & Livestock':0, 'Mammals':0, 'Reptiles & Amphibians':0, 'Biological Principles & Concepts':0, 'Anatomy & 

Physiology':0, 'Environment':0, 'Birds':0, 'Viruses, Monerans, & Protists':0, 'GO-BACK':0}, 

    'History':{'History of Asia & Australasia':0, 'People in European History':0, 'People in United States History':0, 'United States 

History':0, 'African History':0, 'World History & Concepts':0, 'Ancient History':0, 'History of the Americas':0, 'European History':0, 

'GO-BACK':0}, 

    'Geography':{'World Cities, Towns, & Villages':0, 'Regions of the World':0, 'Rivers, Lakes, & Waterways':0, 'Parks & Monuments':0, 

'Countries':0, 'Canadian Provinces & Cities':0, 'Islands':0, 'Mountain Ranges, Peaks, & Landforms':0, 'U.S. Cities, Towns, & 

Villages':0, 'Maps & Mapmaking':0, 'Oceans & Seas':0, 'Exploration & Explorers':0, 'U.S. States, Territories, & Regions':0, 'GO-

BACK':0}, 

    'Religion & Philosophy':{'Theology & Practices':0, 'Mythology':0, 'Religious Figures':0, 'Philosophy':0, 'Religions & Religious 

Groups':0, 'Scripture':0, 'The Occult':0, 'GO-BACK':0}, 

    'Physical Science & Technology':{'Construction & Engineering':0, 'Chemistry':0, 'Earth Science':0, 'Computer Science & 

Electronics':0, 'Machines & Tools':0, 'People in Physical Science':0, 'Astronomy & Space Science':0, 'Paleontology':0, 'Industry, 

Mining, & Fuels':0, 'Physics':0, 'Transportation':0, 'Communications':0, 'Mathematics':0, 'Military Technology':0, 'Time, Weights, & 

Measures':0, 'GO-BACK':0}, 

    'Social Science':{'Economics & Business':0, 'Organizations':0, 'Institutions':0, 'Political Science':0, 'Psychology':0, 'Law':0, 

'Education':0, 'Anthropology':0, 'Military':0, 'Sociology & Social Reform':0, 'Calendar, Holidays, & Festivals':0, 'Archaeology':0, 

'GO-BACK':0}, 

    'Sports, Hobbies, & Pets':{'Sports':0, 'Sports Figures':0, 'Games, Hobbies, & Recreation':0, 'Pets':0, 'GO-BACK':0}, 

    'Performing Arts':{'Theater':0, 'Musicians & Composers':0, 'Cinema, Television, & Broadcasting':0, 'Music':0, 'Dance':0, 'Musical 

Instruments':0, 'GO-BACK':0}} 

 

  task_time_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & 

Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

  task_time_visit_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion 

& Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  trial_time_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & 

Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

  trial_time_visit_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 

'Religion & Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  task_look_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & 

Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  trial_look_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & 

Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  calibrate_time_records = {'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & Philosophy':0, 

'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  calibrate_visit_records = {'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & Philosophy':0, 

'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

  first_select_records = {'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & Philosophy':0, 

'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

  reselect_records = {'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & Philosophy':0, 

'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

  consecutive_reselect_records = {'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & 

Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 
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  prev_header = '' 

  prev_link = '' 

  prev_state = '' 

  trial_number = 0 

  prev_time_stamp = 0 

   

  success_count = 0 

  headings_clicks_success_trials = 0 

  link_clicks_success_trials = 0 

  go_back_count_success_trials = 0 

  time_success_trials = 0 

  heading_time_success_trials = 0 

  link_time_success_trials = 0 

 

  failure_count = 0 

  headings_clicks_failure_trials = 0 

  link_clicks_failure_trials = 0 

  go_back_count_failure_trials = 0 

  time_failure_trials = 0 

 

  go_back_count = 0 

  heading_clicks = 0 

  link_clicks = 0 

  heading_time = 0 

  link_time = 0 

  run_time = 0 

  prev_click_time = 0 

 

  while True: # looping through lines in the file 

    line = in_file.readline() 

 

    if line == '': # if EOF 

      if prev_header != '' and prev_state == 'FIND': 

        if prev_header != '0 Start Page': 

          if prev_link != 'GO-BACK': 

            leaf_terminate_records[prev_header][prev_link] = leaf_terminate_records[prev_header][prev_link] + 1 

          else: 

            visit_records['0 Start Page'] = visit_records['0 Start Page'] + 1 

            page_terminate_records['0 Start Page'] = page_terminate_records['0 Start Page'] + 1 

        else: 

          visit_records[prev_link] = visit_records[prev_link] + 1 

          page_terminate_records[prev_link] = page_terminate_records[prev_link] + 1 

        failure_count = failure_count + 1 

        go_back_count_failure_trials = go_back_count_failure_trials + go_back_count 

        headings_clicks_failure_trials = headings_clicks_failure_trials + heading_clicks 

        link_clicks_failure_trials = link_clicks_failure_trials + link_clicks 

       

      # aggregate the time records for the last trial 

      for page in task_time_records: 

        if trial_time_visit_records[page] != 0: 
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          task_look_records[page] = task_look_records[page] + trial_look_records[page] / float(trial_time_visit_records[page]) 

          task_time_records[page] = task_time_records[page] + trial_time_records[page] / float(trial_time_visit_records[page]) 

          task_time_visit_records[page] = task_time_visit_records[page] + 1 

      break 

 

    tokens = line.split(';') 

    # additional processing for grouped layouts 

    if tokens[PAGE].startswith("Group ["): 

      tokens[PAGE] = tokens[PAGE][7:len(tokens[PAGE])-17] 

    if tokens[PAGE] == "Sports Hobbies Pets": 

      tokens[PAGE] = "Sports, Hobbies, & Pets" 

    if tokens[LINK].startswith("Group ["): 

      tokens[LINK] = tokens[LINK][7:len(tokens[LINK])-17] 

    elif tokens[LINK].endswith("in 0 Start Page"): 

      tokens[LINK] = tokens[LINK][0:len(tokens[LINK])-16] 

    if tokens[LINK] == "Sports Hobbies Pets": 

      tokens[LINK] = "Sports, Hobbies, & Pets" 

 

    # code to calibrate time (using only 2 click success trials) 

    # above comment is superseeded; now used to track 1-click successes in Multi-Group Layout 

    if link_clicks == 0 and tokens[STATE] == 'FOUND': 

      calibrate_time_records[tokens[PAGE]] = calibrate_time_records[tokens[PAGE]] + float(tokens[TIME]) - prev_time_stamp 

      calibrate_visit_records[tokens[PAGE]] = calibrate_visit_records[tokens[PAGE]] + 1 

      calibration_stats_file.write(name[0:9] + ';' + tokens[PAGE] + ';' + str(float(tokens[TIME]) - prev_time_stamp) + ';Model;' + 

tokens[LOOKEDAT]) 

      print >> calibration_stats_file, name[0:9] + ';Top;' + str(trial_time_records['0 Start Page']) + ';Model;' + 

str(trial_look_records['0 Start Page']) 

 

    # code to record time (only the 1st click on a top-level link and only 1st clicks on visits into a 2nd-level page 

    if tokens[SEQ] == '1': # aggregate the time records for the previous trial 

      for page in task_time_records: 

        if trial_time_visit_records[page] != 0: 

          task_look_records[page] = task_look_records[page] + trial_look_records[page] / float(trial_time_visit_records[page]) 

          task_time_records[page] = task_time_records[page] + trial_time_records[page] / float(trial_time_visit_records[page]) 

          task_time_visit_records[page] = task_time_visit_records[page] + 1 

      trial_time_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion 

& Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

      trial_time_visit_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 

'Religion & Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

      trial_look_records = {'0 Start Page':0, 'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion 

& Philosophy':0, 'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

 

    if tokens[SEQ] == '1': # time for first click on a header link on the first visit to Top page 

      prev_time_stamp = 0 

      trial_time_records[tokens[PAGE]] = trial_time_records[tokens[PAGE]] + float(tokens[TIME]) - prev_time_stamp 

      trial_time_visit_records[tokens[PAGE]] = trial_time_visit_records[tokens[PAGE]] + 1 

      trial_look_records[tokens[PAGE]] = trial_look_records[tokens[PAGE]] + int(tokens[LOOKEDAT]) 

    if tokens[TRIAL] == trial_number and prev_header == '0 Start Page' and tokens[PAGE] == prev_link: # time for first click on a 

subordinate link on a sequence of visits to a Subordinate page 

      trial_time_records[tokens[PAGE]] = trial_time_records[tokens[PAGE]] + float(tokens[TIME]) - prev_time_stamp 
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      trial_time_visit_records[tokens[PAGE]] = trial_time_visit_records[tokens[PAGE]] + 1 

      trial_look_records[tokens[PAGE]] = trial_look_records[tokens[PAGE]] + int(tokens[LOOKEDAT]) 

 

    if tokens[LINK] == tokens[PAGE]: # ignore selection the header link of its own page 

      prev_time_stamp = float(tokens[TIME]) 

      prev_click_time = float(tokens[TIME]) 

      continue 

 

    if tokens[TRIAL] == trial_number: # still in same trial 

      if tokens[PAGE] == '0 Start Page' and prev_link != 'GO-BACK': # indicates a go-back after exhausting links on a subordinate page 

        if prev_header != '0 Start Page': 

          visit_records[prev_header] = visit_records[prev_header] + 1 

          select_records[prev_header]['GO-BACK'] = select_records[prev_header]['GO-BACK'] + 1 

          go_back_count = go_back_count + 1 

        else: # case of 2 consecutive visits to Start Page 

          visit_records[prev_link] = visit_records[prev_link] + 1 

          select_records[prev_link]['GO-BACK'] = select_records[prev_link]['GO-BACK'] + 1 

          go_back_count = go_back_count + 1 

    else: # new trial from previous trial 

      for link in first_select_records: 

        if first_select_records[link] > 1: 

          reselect_records[link] = reselect_records[link] + first_select_records[link] - 1 

      first_select_records = {'Art, Language & Literature':0, 'Life Science':0, 'History':0, 'Geography':0, 'Religion & Philosophy':0, 

'Physical Science & Technology':0, 'Social Science':0, 'Sports, Hobbies, & Pets':0, 'Performing Arts':0} 

      if prev_header != '' and prev_state == 'FIND': 

        if prev_header != '0 Start Page': 

          if prev_link != 'GO-BACK': 

            leaf_terminate_records[prev_header][prev_link] = leaf_terminate_records[prev_header][prev_link] + 1 

          else: 

            visit_records['0 Start Page'] = visit_records['0 Start Page'] + 1 

            page_terminate_records['0 Start Page'] = page_terminate_records['0 Start Page'] + 1            

        else: 

          visit_records[prev_link] = visit_records[prev_link] + 1 

          page_terminate_records[prev_link] = page_terminate_records[prev_link] + 1 

        failure_count = failure_count + 1 

        go_back_count_failure_trials = go_back_count_failure_trials + go_back_count 

        headings_clicks_failure_trials = headings_clicks_failure_trials + heading_clicks 

        link_clicks_failure_trials = link_clicks_failure_trials + link_clicks 

        time_failure_trials = time_failure_trials + run_time 

        go_back_count = 0 

        heading_clicks = 0 

        link_clicks = 0 

        run_time = 0 

        heading_time = 0 

        link_time = 0 

        prev_click_time = 0 

        prev_header = '' 

 

    visit_records[tokens[PAGE]] = visit_records[tokens[PAGE]] + 1 

    select_records[tokens[PAGE]][tokens[LINK]] = select_records[tokens[PAGE]][tokens[LINK]] + 1 

    if tokens[LINK] == 'GO-BACK': 
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      go_back_count = go_back_count + 1 

    else: 

      if tokens[PAGE] == '0 Start Page': 

        heading_clicks = heading_clicks + 1 

        heading_time = heading_time + float(tokens[TIME]) - prev_click_time 

        first_select_records[tokens[LINK]] = first_select_records[tokens[LINK]] + 1 

        if tokens[LINK] == prev_header: 

          consecutive_reselect_records[tokens[LINK]] = consecutive_reselect_records[tokens[LINK]] + 1 

      else: 

        link_clicks = link_clicks + 1 

        link_time = link_time + float(tokens[TIME]) - prev_click_time 

      prev_click_time = float(tokens[TIME]) 

    run_time = run_time + float(tokens[TIME]) - prev_time_stamp 

    if tokens[STATE] == 'FOUND': # This was a success trial 

      leaf_terminate_records[tokens[PAGE]][tokens[LINK]] = leaf_terminate_records[tokens[PAGE]][tokens[LINK]] + 1 

      successful_records[tokens[PAGE]][tokens[LINK]] = successful_records[tokens[PAGE]][tokens[LINK]] + 1 

      success_count = success_count + 1 

      go_back_count_success_trials = go_back_count_success_trials + go_back_count 

      headings_clicks_success_trials = headings_clicks_success_trials + heading_clicks 

      link_clicks_success_trials = link_clicks_success_trials + link_clicks 

      heading_time_success_trials = heading_time_success_trials + heading_time 

      link_time_success_trials = link_time_success_trials + link_time 

      time_success_trials = time_success_trials + run_time 

      go_back_count = 0 

      heading_clicks = 0 

      link_clicks = 0 

      run_time = 0 

      heading_time = 0 

      link_time = 0 

      prev_click_time = 0 

 

    if tokens[STATE] == 'FOUND': # This was a success trial 

      prev_header = '' 

    else: 

      prev_header = tokens[PAGE] 

    prev_link = tokens[LINK] 

    prev_state = tokens[STATE] 

    trial_number = tokens[TRIAL] 

    prev_time_stamp = float(tokens[TIME]) 

     

  for page in select_records: 

    if page != '0 Start Page': 

      print >> linklevel_file, name[0:9] + ';Top;' + page + ';' + str(visit_records['0 Start Page']-page_terminate_records['0 Start 

Page']) + ';' + \ 

            str(select_records['0 Start Page'][page]) + ';' + str(reselect_records[page]) + ';' + 

str(consecutive_reselect_records[page]) + ';' + \ 

            str(select_records[page]['GO-BACK']) + ';' + str(page_terminate_records[page]) 

      for link in select_records[page]: 

        if link != 'GO-BACK': # this line added for easier combination of participant results with model results 

          print >> linklevel_file, name[0:9] + ';' + page + ';' + link + ';' + str(visit_records[page]-page_terminate_records[page]) + 

';' + \ 
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                str(select_records[page][link]) + ';;;;' + str(leaf_terminate_records[page][link]) + ';' + 

str(successful_records[page][link]) 

    # following two lines commented out for easier combination of participant results with model results 

    #else: 

    #  print >> linklevel_file, name[0:9] + ';' + page + ';;' + str(visit_records[page]-page_terminate_records[page]) + ';;;' + 

str(page_terminate_records[page]) 

    if task_time_visit_records[page] != 0: 

      print >> time_file, name[0:9] + ';' + page + ';' + str(task_time_records[page] / float(task_time_visit_records[page])) + ';' + 

str(task_look_records[page] / float(task_time_visit_records[page])) 

    else: 

      print >> time_file, name[0:9] + ';' + page 

 

  go_back_total = 0 

  for page in select_records: 

    if page != '0 Start Page': 

      go_back_total = go_back_total + select_records[page]['GO-BACK'] 

  printed = False 

  for page in calibrate_visit_records: 

    if calibrate_visit_records[page] > 0: 

      print >> tasklevel_file, name[0:9] + ';' + str(calibrate_time_records[page] / float(calibrate_visit_records[page])) + ';' + 

str(go_back_total) + ';' \ 

            + str(calibrate_visit_records[page]) + ';' + str(success_count) + ';', 

      if success_count != 0: 

        print >> tasklevel_file, str(float(headings_clicks_success_trials + link_clicks_success_trials)/success_count) + ';' + \ 

              str(float(headings_clicks_success_trials)/success_count) + ';' + \ 

              str(float(link_clicks_success_trials)/success_count) + ';' + \ 

              str(float(go_back_count_success_trials)/success_count) + ';' + \ 

              str(float(time_success_trials)/success_count) + ';' + \ 

              str(float(time_success_trials)/(headings_clicks_success_trials + link_clicks_success_trials)) + ';' + \ 

              str(float(heading_time_success_trials)/headings_clicks_success_trials) + ';' + \ 

              str(float(link_time_success_trials)/link_clicks_success_trials) + ';', 

      else: 

        print >> tasklevel_file, ';;;;;;;;', 

      print >> tasklevel_file, str(failure_count) + ';', 

      if failure_count != 0: 

        print >> tasklevel_file, str(float(headings_clicks_failure_trials + link_clicks_failure_trials)/failure_count) + ';' + \ 

              str(float(headings_clicks_failure_trials)/failure_count) + ';' + \ 

              str(float(link_clicks_failure_trials)/failure_count) + ';' + \ 

              str(float(go_back_count_failure_trials)/failure_count) + ';' + \ 

              str(float(time_failure_trials)/failure_count) + ';' + \ 

              str(float(time_failure_trials)/(headings_clicks_failure_trials + link_clicks_failure_trials)) 

      else: 

        print >> tasklevel_file, ';;;;;' 

      printed = True 

  if not printed: 

    print >> tasklevel_file, name[0:9] + ';;' + str(go_back_total) + ';0;' + str(success_count) + ';', 

    if success_count != 0: 

      print >> tasklevel_file, str(float(headings_clicks_success_trials + link_clicks_success_trials)/success_count) + ';' + \ 

            str(float(headings_clicks_success_trials)/success_count) + ';' + \ 

            str(float(link_clicks_success_trials)/success_count) + ';' + \ 

            str(float(go_back_count_success_trials)/success_count) + ';' + \ 
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            str(float(time_success_trials)/success_count) + ';' + \ 

            str(float(time_success_trials)/(headings_clicks_success_trials + link_clicks_success_trials)) + ';' + \ 

            str(float(heading_time_success_trials)/headings_clicks_success_trials) + ';' + \ 

            str(float(link_time_success_trials)/link_clicks_success_trials) + ';', 

    else: 

      print >> tasklevel_file, ';;;;;;;;', 

    print >> tasklevel_file, str(failure_count) + ';', 

    if failure_count != 0: 

      print >> tasklevel_file, str(float(headings_clicks_failure_trials + link_clicks_failure_trials)/failure_count) + ';' + \ 

            str(float(headings_clicks_failure_trials)/failure_count) + ';' + \ 

            str(float(link_clicks_failure_trials)/failure_count) + ';' + \ 

            str(float(go_back_count_failure_trials)/failure_count) + ';' + \ 

            str(float(time_failure_trials)/failure_count) + ';' + \ 

            str(float(time_failure_trials)/(headings_clicks_failure_trials + link_clicks_failure_trials)) 

    else: 

      print >> tasklevel_file, ';;;;;' 

         

  in_file.close() 

   

linklevel_file.close() 

time_file.close() 

tasklevel_file.close() 

calibration_stats_file.close() 
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